نتایج جستجو برای: خوشهبندیk means
تعداد نتایج: 350089 فیلتر نتایج به سال:
K-means is one of the most widely used clustering algorithms in various disciplines, especially for large datasets. However the method is known to be highly sensitive to initial seed selection of cluster centers. K-means++ has been proposed to overcome this problem and has been shown to have better accuracy and computational efficiency than k-means. In many clustering problems though –such as w...
The K-means algorithm is one of the most often used clustering techniques. However, when it comes to discovering clusters in informetric data sets that consist of non-increasingly ordered vectors of not necessarily conforming lengths, such a method cannot be applied directly. Hence, in this paper, we propose a K-means-like algorithm to determine groups of producers that are similar not only wit...
Social networks are generators of large amount of data produced by users, who are not limited with respect to the content of the information they exchange. The data generated can be a good indicator of trends and topic preferences among users. In our paper we focus on analyzing and representing hashtags by the corpus in which they appear. We cluster a large set of hashtags using K-means on map ...
In this paper, we propose a new clustering algorithm to cluster data. The proposed algorithm adopts a new non-metric measure based on the idea of “symmetry”. The detected clusters may be a set of clusters of different geometrical structures. Three data sets are tested to illustrate the effectiveness of our proposed algorithm.
Uniform deviation bounds limit the difference between a model’s expected loss and its loss on a random sample uniformly for all models in a learning problem. In this paper, we provide a novel framework to obtain uniform deviation bounds for unbounded loss functions. As a result, we obtain competitive uniform deviation bounds for k-Means clustering under weak assumptions on the underlying distri...
The Cooperative Target Observation (CTO) problem has been of great interest in the multi-agents and robotics literature due to the problem being at the core of a number of applications including surveillance. In CTO problem, the observer agents attempt to maximize the collective time during which each moving target is being observed by at least one observer in the area of interest. However, mos...
In this paper, we evaluate the player segmentation for trajectory estimation in soccer games. In order to estimate the field trajectories of players in soccer games, we should accurately locate the foot positions of players in each soccer image and transform them into those in the soccer field. However, we cannot always segment the players completely, since players are often motion-blurred due ...
The K-Means clustering is by far the most widely used method for discovering clusters in data. It has a good performance on the data with compact super-sphere distributions, but tends to fail in the data organized in more complex and unknown shapes. In this paper, we analyze in detail the characteristic property of data clustering and propose a novel dissimilarity measure, named density-sensiti...
Clustering is a separation of data into groups of similar objects. Every group called cluster consists of objects that are similar to one another and dissimilar to objects of other groups. In this paper, the K-Means algorithm is implemented by three distance functions and to identify the optimal distance function for clustering methods. The proposed K-Means algorithm is compared with K-Means, S...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید