نتایج جستجو برای: حلقه هیلبرت
تعداد نتایج: 8310 فیلتر نتایج به سال:
*c-مدول های هیلبرت یک رده بین فضاهای باناخ و فضاهای هیلبرت هستند به طوری که در تمامی اصول فضای هیلبرت صدق می کنند بااین تفاوت که ضرب داخلی ذر نظر گرفته شده مقادیرش در یک *c-جبر می باشد.
در این رساله ابتدا این برسی میکنیم تحت چه شرایطی جمع و ترکیب دو عملگر یک مدول یک *c-مدول هیلبرت منظم است. سپس به مساله اغتشاش عملگرهای (خود الحاق) منظم فردهلم را بروی *c-مدولهای هیلبرت می پردازیم.در ادامه خواص توپولوژیک مجموعه عملگرهای (خود الحاق)منظم فردهلم را در فضای عملگرهای (خود الحاق)منظم نسبت به متر رخنه بررسی می کنیم. سپس قضیه تجزیه برد داگلاس برای عملگرهای بسته و به طور چگال تعریف شده ب...
فرض کنیم r یک حلقه جابجایی و g(x),f(x) دو چندجمله ای ناصفر از r[x] باشند. مک کوی ثابت کرد که اگر f(x)g(x)=0، آنگاه عنصر ناصفر c ?r وجود دارد به طوریکه f(x)c=0. حلقه r (نه لزوماً جابجایی) را مک کوی راست می نامیم، هرگاه g(x),f(x) دو چندجمله ای ناصفر از r[x]باشند و f(x)g(x)=0، آنگاه عنصر ناصفر c ?r وجود داشته باشد به طوریکه f(x)c=0. در این پایان نامه ابتدا برخی توسیع های حلقه های مک کوی راست را ب...
در این پایان نامه، ابتدا تعاریف و خواصی از فضاهای هیلبرت، c*-جبرها، حاصل ضرب تنسوری جبری وc*-مدول های هیلبرت را بیان می کنیم. سپس به بررسی تابعک های خطی مثبت، نگاشت های مثبت و نگاشت های کاملاً مثبت رویc*-جبرها پرداخته و دو قضیه ی اساسی در زمینه ی نگاشت های کاملاً مثبت بیان خواهیم کرد؛ قضیه ی اشتین اشپرینگ که یک نمایش مشخص از نگاشت های کاملاً مثبت رویc*-جبر ها به جبر عملگرهای کراندار روی فضاه...
قضیه ی تثبیت کاسپاروف بیان می دارد که برای هر *c- جبر a و هر a- مدول هیلبرت شمارا تولید شده ی e، جمع مستقیم ah?e به عنوان a- مدول هیلبرت یکریخت با ah است. طبیعی است که در مورد تعمیم این قضیه به a- مدول های هیلبرت دلخواه سوال کنیم که در آن ah را جایگزین a j?j? ، برای یک مجموعه ی به قدر کافی بزرگ j وابسته به e، کنیم. به عبارت دیگر برای هر a- مدول هیلبرت e، آیا مجموعه ی مناسب j ای وابسته به e وجود...
فرض کنیم x یک فضای باناخ حقیقی باشد . ثابت می کنیم که اگر یک عملگر مثبت ، متقارن ، یک به یک و اکیداً نامنفرد از x به توی دوگانش وجود داشته باشد آنگاه یا x با یک فضای هیلبرت یکریخت می باشد یا شامل یک زیر فضای متمم شده غیر بدیهی است که با یک فضای هیلبرت یکریخت می باشد . همچنین ما به مورد غیر متقارن نیز خواهیم پرداخت .
در این رساله به مطالعه و بررسی برخی از ویژگی های قاب ها، g-قابها و قاب های مخلوط در فضاهای هیلبرت و *c-مدول های هیلبرت می پردازیم. در ابتدا نشان می دهیم تحت یک سری از شرایط، حاصلجمع مستقیم تعداد شمارایی از g-قاب ها (g-پایه های ریس) یک g-قاب (g-پایه ریس ) برای فضای حاصلجمع مستقیم می باشد. همچنین نشان می دهیم حاصلضرب تانسوری تعداد متناهی از g-قابها (به ترتیب قاب های مخلوط، قاب ها، g-پایه های ریس)...
قابها-p روی فضاهای باناخ توسیع مستقیمی از قابها روی فضاهای هیلبرت می باشند. برخلاف انواع دیگر قابها، نگاشت -قابها به دلیل خطی نبودن نگاشت دوگانی، خاصیت خطی و عملگری خود را از دست داده و مانند یک نگاشت غیر خطی -p قاب مانند -pقابها خواصی از نگاشت -p به دوگان آن عمل می کند. در این مقاله با گذاشتن شرایطی روی X از فضای باناخ ،$T^{perp}$با الحاق عملگر U بطور ضعیف پیوستگی، یکن...
چکیده ندارد.
چکیده ندارد.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید