نتایج جستجو برای: جبر باناخ دو تصویری
تعداد نتایج: 282413 فیلتر نتایج به سال:
در این پایان نامه، ابتدا به توصیف طیفی رادیکال ژاکوبسن جبر باناخ a بر حسب چند پارامتر طیفی پرداخته می شود. به خصوص نشان داده می شود که برای عضو وارون ناپذیر a متعلق به جبر باناخ a، اگر تعداد عناصر موجود در طیف ax به ازای هر x متعلق به یک همسایگی دلخواه از همانی، کمتر یا مساوی تعداد عناصر موجود در طیف x باشد، آنگاه a به رادیکال ژاکوبسن جبر باناخ a تعلق دارد. همچنین توصیف هایی طیفی از اسکالرها، ی...
فرض کنیم r^+=[0,∞) و {ω_n } دنباله ای صعودی از توابع وزن رویr^+ باشد. در این صورت خانواده ی جبرهای پیچشی{l^1 (ω_n ) } و اندازه ی وزن دار {m(ω_n ) } را در نظر می گیریم. در این پایان نامه، جبرهای فرشه یa(ω)= ∩l^1 (ω_n ) و b(ω)= ∩m(ω_n ) را معرفی و به ساختار توپولوژی آن ها خواهیم پرداخت. بررسی ارتباط ویژگی های جبری و توپولوژیکی این دو ساختار، با فضای مولد آن ها، هدف های اصلی این پایان نامه است.
در این رساله میانگین پذیری یک جبر باناخ را به وسیله دنباله های دقیق کوتاه از مدولها بررسی می کنیم فصل اول شامل تعاریف و قضایایی است که در فصول بعد از آنها استفاده خواهیم کرد. این تعاریف و قضایا از مراجع [2] و [3] و [5] و [10] و [11] استخراج شده اند. در فصل دوم و سوم ارتباط میانگین پذیری و شکافندگی نوعی از دنباله های دقیق کوتاه را با توجه به مرجع [3] و [9] و [12] بررسی می کنیم. در فصل چهارم نقش ...
فرض کنید k یک فضای باناخ باشد و b یک جبر c یکدار باشد و l(k) b : یک انژکتیو همومورفیسم یکدار باشد. همچنین فرض کنید که یک تابع r k × k: وجود داشته باشد بطوریکه برای هر k k2 ، k1 ، k و برای هر b b ، الف ) k (k ، k ) ب ) k (k2 ، k1 ) ج ) (k2 ،k1 ) ) k2 ، k1 ) . سپس برای همه b b ها، اسپکتروم b در b معادل با اسپکتروم بعنوان اپراتور خطی کراندار روی k است . حالتهای خاصی از این نتایج عبارتند از : 1 - ا...
در این پایان نامه ابتدا به بیان برخی مفاهیم و قضیه های اولیه می پردازیم که تعریف –c* جبرها و فون نیومن جبرها و بیان قضیه ی گلفند – نیمارک از آن جمله اند. هدف این پایان نامه بررسی مسئله ی حداقل کردن مقدار ||a-x|| برای عنصر ثابت دلخواه a از –c* جبر a و متغیر x ( روی مجموعه ی n ) است. مسئله ی حداقل مقدار ||a-x|| را در حالتهای مختلفی که مجموعه ی n از عناصر مثبت، طولپا، یکانی، طولپای جزئی و جابجاگ...
در این رساله به مطالعه برخی از ویژگی های همانستگی جبرهای باناخ مانند میانگین پذیری کاراکتری و همچنین به بررسی وجود برگشت و سه گشت روی دوگان دوم برخی از جبرهای باناخ می پردازیم. در ابتدا $phi$-میانگین پذیری جبرهای باناخ مورد بررسی قرار می گیرد. در واقع، وجود دو رده ی خاص از $phi $-میانگین ها را مورد مطالعه قرار می دهیم؛ $phi $-میانگین های با نرم $1$ و $phi $-میانگین های...
این پایان نامه شامل سه فصل است. در فصل اول تعاریف و مفاهیم مورد نیاز و همچنین قضایایی در مورد دوگان دوم جبرهای باناخ بیان شده پایان این فصل ما را به تعریف (l1(g رهمنون می سازد. در فصل دوم اعمال مختلف روی یک جبر باناخ، همچون ضرب مدولی، ضرب آرنز و ضرب تانسوری را بررسی خواهیم کرد.همچنین در این فصل ثابت می کنیم که a** با هر یک از ضربهای آرنز جبر باناخ است. مفاهیم و قضایای این فصل از اهمیت زیاد...
جبر باناخ a به طور تقریبی میانگین پذیر است هرگاه برای هر a-مدول x، هر اشتقاق پیوسته *^ d : a → x تقریباً درونی باشد. در این پایان نامه نشان می دهیم که تقریباً میانگین پذیری و تقریباً انقباض پذیری خواص یکسانی دارند.همچنین نشان می دهیم که به طور یکنواخت میانگین پذیری و به طور یکنواخت میانگین پذیری تقریبی خواص مشابهی دارند. نتایج به دست آمده روی جبرهای باناخ دنباله ای، جبرهای لیپ شیتس و جبرهای برلینگ...
ما در این مجموعه نشان خواهیم داد اگر l یک نیم مشبکه باشد آنگاه l^1(l) که با ضرب پیچشی یک جبر باناخ است ، دفیفا زمانی یکدست می شود که l بطور یکنواخت موضعا متناهی باشد آنگاه به عنوان یک جبر باناخ ، با فضای باناخ l^1(l) که به ضرب نقطه وار مجهز شده، یکریخت است و در نهایت نشان خواهیم داد که این تکنیک جطور می تواند به اثبات یکدستی جبر های نیم گروه کلیفورد توسیع پیدا بکند.
فرض کنیم s یک نیمگروه گسسته باشد. در این پایان نامه جبر نیم گروهی l^1(s)، میانگین پذیری و ثابت میانگین پذیری cs آن بررسی شده است. به خصوص نشان داده میشود که بازه (5,1) مقادیری ممنوع برای cs است و اگر >cs5، آنگاه s یک گروه است. نشان داده می شود که میتوان فضای کاراکترهای جبر باناخ l^1(s) را با فضای نیمکاراکترهای s یکی گرفت. جبر فوریه l^1(s) یک جبر تابعی باناخ است که لزوماً منظم نیست. در حالتی...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید