نتایج جستجو برای: ξ

تعداد نتایج: 4767  

2000
Masashi Kobayashi MASASHI KOBAYASHI

Let M be an m-dimensional complex manifold. We recall the definition of the Kobayashi-Royden pseudo-metric on M : FM (ξ) = inf{t > 0| ∃f ∈ O(∆,M) such that tf∗(d/dζ|ζ=0) = ξ}, (1.1) where ξ ∈ T pM is a holomorphic tangent vector, ∆ = {ζ ∈ C| |ζ| < 1}, and O(∆,M) = {f : ∆ → M | f is a holomorphic mapping}. Then, FM has the following properties: (i) FM (ξ) ≥ 0 for any ξ ∈ T pM ; (ii) FM (λξ) = |λ...

2006
Svante Janson

A conditioned Galton–Watson tree is a random rooted tree that is (or has the same distribution as) the family tree of a Galton–Watson process with some given offspring distribution, conditioned on the total number of vertices. We let ξ be a random variable with the given offspring distribution; i.e., the number of offspring of each individual in the Galton–Watson process is a copy of ξ. We let ...

2001
I. S. Tsukerman

Do neutrino oscillations allow an extra phenomenological parameter? Abstract The quantity ξ introduced recently in the phenomenological description of neu-trino oscillations is in fact not a free parameter, but a fixed number. The literature on phenomenology of neutrino oscillations is vast (see, e.g., [1]-[6] and references therein). In a recent paper [7] Giunti and Kim in the case of two-flav...

2014
Houyu Zhao Miroslava Růžičková

and Applied Analysis 3 where i, j, and k are nonnegative integers. Let I be a closed interval in R. By induction, we may prove that x∗jk t Pjk ( x10 t , . . . , x1,j−1 t ; . . . ;xk0 t , . . . , xk,j−1 t ) , 1.11 βjk Pjk ⎛ ⎜⎝ j terms { }} { x′ ξ , . . . , x′ ξ ; . . . ; j terms { }} { x k ξ , . . . , x k ξ ⎞ ⎟⎠, 1.12 Hjk Pjk ⎛ ⎜⎝ j terms { }} { 1, . . . , 1; j terms { }} { M2, . . . ,M2; . . . ...

2008
Tamara Grava

We study the equilibrium measure for a logarithmic potential in the presence of an external field V∗(ξ) + t p(ξ), where t is a parameter, V∗(ξ) is a smooth function and p(ξ) a monic polynomial. When p(ξ) is of an odd degree, the equilibrium measure is shown to be supported on a single interval as |t| is sufficiently large. When p(ξ) is of an even degree, the equilibrium measure is supported on ...

2007
Olivier Finkel Dominique Lecomte

We prove that, for each countable ordinal ξ ≥ 1, there exist some Σ0ξ-complete ω-powers, and some Π0ξ-complete ω-powers, extending previous works on the topological complexity of ω-powers [Fin01, Fin03, Fin04, Lec01, Lec05, DF06]. We prove effective versions of these results; in particular, for each recursive ordinal ξ < ω 1 there exist some recursive sets A ⊆ 2 such that A∞ ∈ Π 0ξ \Σ 0 ξ (resp...

2011
T. Schreiber J. E. Yukich

Observations are made on a point process Ξ in R in a window Qλ of volume λ. The observation, or ‘score’ at a point x, here denoted ξ(x, Ξ), is a function of the points within a random distance of x. When the input Ξ is a Poisson or binomial point process, the large λ limit theory for the total score ∑ x∈Ξ∩Qλ ξ(x, Ξ ∩Qλ), when properly scaled and centered, is well understood. In this paper we es...

2006
Douglas R. Lanman

At this point, we require an explicit form of the characteristics. First, consider the solution to the ODE ȳξ(ξ, η) = 1. Integrating with respect to ξ, we find ȳ = ξ + φ(η). Applying the initial value on Γ, where y0(η) = 0 and ξ = 0, we find φ(η) = 0. Next, consider the solution to the ODE x̄ξ(ξ, η) = η . Integrating with respect to ξ, we find x̄ = ξη + ψ(η). Using the initial value on Γ, where x...

Journal: :Physical review letters 2014
R Aaij B Adeva M Adinolfi A Affolder Z Ajaltouni S Akar J Albrecht F Alessio M Alexander S Ali G Alkhazov P Alvarez Cartelle A A Alves S Amato S Amerio Y Amhis L An L Anderlini J Anderson R Andreassen M Andreotti J E Andrews R B Appleby O Aquines Gutierrez F Archilli A Artamonov M Artuso E Aslanides G Auriemma M Baalouch S Bachmann J J Back A Badalov C Baesso W Baldini R J Barlow C Barschel S Barsuk W Barter V Batozskaya V Battista A Bay L Beaucourt J Beddow F Bedeschi I Bediaga S Belogurov K Belous I Belyaev E Ben-Haim G Bencivenni S Benson J Benton A Berezhnoy R Bernet M-O Bettler M van Beuzekom A Bien S Bifani T Bird A Bizzeti P M Bjørnstad T Blake F Blanc J Blouw S Blusk V Bocci A Bondar N Bondar W Bonivento S Borghi A Borgia M Borsato T J V Bowcock E Bowen C Bozzi T Brambach D Brett M Britsch T Britton J Brodzicka N H Brook H Brown A Bursche J Buytaert S Cadeddu R Calabrese M Calvi M Calvo Gomez P Campana D Campora Perez A Carbone G Carboni R Cardinale A Cardini L Carson K Carvalho Akiba G Casse L Cassina L Castillo Garcia M Cattaneo Ch Cauet R Cenci M Charles Ph Charpentier M Chefdeville S Chen S-F Cheung N Chiapolini M Chrzaszcz X Cid Vidal G Ciezarek P E L Clarke M Clemencic H V Cliff J Closier V Coco J Cogan E Cogneras V Cogoni L Cojocariu G Collazuol P Collins A Comerma-Montells A Contu A Cook M Coombes S Coquereau G Corti M Corvo I Counts B Couturier G A Cowan D C Craik M Cruz Torres S Cunliffe R Currie C D'Ambrosio J Dalseno P David P N Y David A Davis K De Bruyn S De Capua M De Cian J M De Miranda L De Paula W De Silva P De Simone C-T Dean D Decamp M Deckenhoff L Del Buono N Déléage D Derkach O Deschamps F Dettori A Di Canto H Dijkstra S Donleavy F Dordei M Dorigo A Dosil Suárez D Dossett A Dovbnya K Dreimanis G Dujany F Dupertuis P Durante R Dzhelyadin A Dziurda A Dzyuba S Easo U Egede V Egorychev S Eidelman S Eisenhardt U Eitschberger R Ekelhof L Eklund I El Rifai Ch Elsasser S Ely S Esen H-M Evans T Evans A Falabella C Färber C Farinelli N Farley S Farry R F Fay D Ferguson V Fernandez Albor F Ferreira Rodrigues M Ferro-Luzzi S Filippov M Fiore M Fiorini M Firlej C Fitzpatrick T Fiutowski P Fol M Fontana F Fontanelli R Forty O Francisco M Frank C Frei M Frosini J Fu E Furfaro A Gallas Torreira D Galli S Gallorini S Gambetta M Gandelman P Gandini Y Gao J García Pardiñas J Garofoli J Garra Tico L Garrido D Gascon C Gaspar R Gauld L Gavardi A Geraci E Gersabeck M Gersabeck T Gershon Ph Ghez A Gianelle S Gianì V Gibson L Giubega V V Gligorov C Göbel D Golubkov A Golutvin A Gomes C Gotti M Grabalosa Gándara R Graciani Diaz L A Granado Cardoso E Graugés E Graverini G Graziani A Grecu E Greening S Gregson P Griffith L Grillo O Grünberg B Gui E Gushchin Yu Guz T Gys C Hadjivasiliou G Haefeli C Haen S C Haines S Hall B Hamilton T Hampson X Han S Hansmann-Menzemer N Harnew S T Harnew J Harrison J He T Head V Heijne K Hennessy P Henrard L Henry J A Hernando Morata E van Herwijnen M Heß A Hicheur D Hill M Hoballah C Hombach W Hulsbergen P Hunt N Hussain D Hutchcroft D Hynds M Idzik P Ilten R Jacobsson A Jaeger J Jalocha E Jans P Jaton A Jawahery F Jing M John D Johnson C R Jones C Joram B Jost N Jurik S Kandybei W Kanso M Karacson T M Karbach S Karodia M Kelsey I R Kenyon T Ketel B Khanji C Khurewathanakul S Klaver K Klimaszewski O Kochebina M Kolpin I Komarov R F Koopman P Koppenburg M Korolev A Kozlinskiy L Kravchuk K Kreplin M Kreps G Krocker P Krokovny F Kruse W Kucewicz M Kucharczyk V Kudryavtsev K Kurek T Kvaratskheliya V N La Thi D Lacarrere G Lafferty A Lai D Lambert R W Lambert G Lanfranchi C Langenbruch B Langhans T Latham C Lazzeroni R Le Gac J van Leerdam J-P Lees R Lefèvre A Leflat J Lefrançois S Leo O Leroy T Lesiak B Leverington Y Li T Likhomanenko M Liles R Lindner C Linn F Lionetto B Liu S Lohn I Longstaff J H Lopes N Lopez-March P Lowdon D Lucchesi H Luo A Lupato E Luppi O Lupton F Machefert I V Machikhiliyan F Maciuc O Maev S Malde A Malinin G Manca G Mancinelli A Mapelli J Maratas J F Marchand U Marconi C Marin Benito P Marino R Märki J Marks G Martellotti A Martín Sánchez M Martinelli D Martinez Santos F Martinez Vidal D Martins Tostes A Massafferri R Matev Z Mathe C Matteuzzi B Maurin A Mazurov M McCann J McCarthy A McNab R McNulty B McSkelly B Meadows F Meier M Meissner M Merk D A Milanes M-N Minard N Moggi J Molina Rodriguez S Monteil M Morandin P Morawski A Mordà M J Morello J Moron A-B Morris R Mountain F Muheim K Müller M Mussini B Muster P Naik T Nakada R Nandakumar I Nasteva M Needham N Neri S Neubert N Neufeld M Neuner A D Nguyen T D Nguyen C Nguyen-Mau M Nicol V Niess R Niet N Nikitin T Nikodem A Novoselov D P O'Hanlon A Oblakowska-Mucha V Obraztsov S Oggero S Ogilvy O Okhrimenko R Oldeman C J G Onderwater M Orlandea J M Otalora Goicochea A Otto P Owen A Oyanguren B K Pal A Palano F Palombo M Palutan J Panman A Papanestis M Pappagallo L L Pappalardo C Parkes C J Parkinson G Passaleva G D Patel M Patel C Patrignani A Pearce A Pellegrino M Pepe Altarelli S Perazzini P Perret M Perrin-Terrin L Pescatore E Pesen K Petridis A Petrolini E Picatoste Olloqui B Pietrzyk T Pilař D Pinci A Pistone S Playfer M Plo Casasus F Polci A Poluektov E Polycarpo A Popov D Popov B Popovici C Potterat E Price J D Price J Prisciandaro A Pritchard C Prouve V Pugatch A Puig Navarro

We report on measurements of the mass and lifetime of the Ξ(b)⁻ baryon using about 1800 Ξ(b)⁻ decays reconstructed in a proton-proton collision data set corresponding to an integrated luminosity of 3.0  fb⁻¹ collected by the LHCb experiment. The decays are reconstructed in the Ξ(b)⁻→Ξ(c)⁰π⁻, Ξ(c)⁰→pK⁻K⁻π⁺ channel and the mass and lifetime are measured using the Λ(b)⁰→Λ(c)⁺π⁻ mode as a reference...

Journal: :Journal of Differential Equations 2022

In this paper we prove a higher differentiability result for the solutions to class of obstacle problems in formmin⁡{∫ΩF(x,Dw)dx:w∈Kψ(Ω)} where ψ∈W1,p(x)(Ω) is fixed function called and Kψ(Ω)={w∈W01,p(x)(Ω)+u0:w≥ψa.e. Ω} admissible functions, suitable boundary value u0. We deal with convex integrand F which satisfies p(x)-growth conditions|ξ|p(x)≤F(x,ξ)≤C(1+|ξ|p(x)),p(x)>1.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید