نتایج جستجو برای: κ
تعداد نتایج: 11161 فیلتر نتایج به سال:
Let κ < λ be regular cardinals. We say that an embedding j : V → M with critical point κ is λ-tall if λ < j(κ) and M is closed under κ-sequences in V . Silver showed that GCH can fail at a measurable cardinal κ, starting with κ being κ++-supercompact. Later, Woodin improved this result, starting from the optimal hypothesis of a κ++-tall measurable cardinal κ. Now more generally, suppose that κ ...
Suppose κ = cf(κ), λ > cf(λ) = κ and λ = λ. We prove that there exist a sequence 〈Bi : i < κ〉 of Boolean algebras and an ultrafilterD on κ so that λ = ∏ i<κ Depth(Bi)/D < Depth ( ∏ i<κ Bi/D) = λ . An identical result holds also for Length. The proof is carried in ZFC, and it holds even above large cardinals. 2010 Mathematics Subject Classification. Primary: 06E05, 03G05. Secondary: 03E45.
We show that the reduced cofinality of the nonstationary ideal NSκ on a regular uncountable cardinal κ may be less than its cofinality, where the reduced cofinality of NSκ is the least cardinality of any family F of nonstationary subsets of κ such that every nonstationary subset of κ can be covered by less than κ many members of F . For this we investigate connections of the various cofinalitie...
Change first the cofinality of κ to ω by adding a Prikry sequence ⟨κn | n < ω⟩ such that each κn is κ +n+2 n –strong. Then use the short extenders forcing which adds κ +ω+2 many cofinal ω-sequences to κ (after the preparation or simultaneously with it). All cardinals will be preserved then. If one does not care about falling of κ, then preform Gap 2 short extenders forcing. As a result κ will t...
Based on the κ-deformed functions (κ-exponential and κ-logarithm) and associated multiplication operation (κ-product) introduced by Kaniadakis (Phys. Rev. E 66 (2002) 056125), we present another one-parameter generalization of Gauss’ law of error. The likelihood function in Gauss’ law of error is generalized by means of the κ-product. This κ-generalized maximum likelihood principle leads to the...
Let κ, λ be regular uncountable cardinals such that λ > κ+ is not a successor of a singular cardinal of low cofinality. We construct a generic extension with s(κ) = λ starting from a ground model in which o(κ) = λ and prove that assuming ¬0¶, s(κ) = λ implies that o(κ) ≥ λ in the core model.
We provide a model where u(κ) < 2κ for a supercompact cardinal κ. [10] provides a sketch of how to obtain such a model by modifying the construction in [6]. We provide here a complete proof using a different modification of [6] and further study the values of other natural generalizations of classical cardinal characteristics in our model. For this purpose we generalize some standard facts that...
We prove the following: Theorem A. If D is a (λ+, κ)-regular ultrafilter, then either (a) D is (λ, κ)-regular, or (b) the cofinality of the linear order ∏ D〈λ, <〉 is cf κ, and D is (λ, κ′)-regular for all κ′ < κ. Corollary B. Suppose that κ is singular, κ > λ and either λ is regular, or cf κ < cf λ. Then every (λ+n, κ)-regular ultrafilter is (λ, κ)-regular. We also discuss some consequences and...
Given a topological groupG (usually compact abelian), the authors study the poset D = D(G) of dense subgroups of G and its impact on the algebraic structure of G. A key tool for this is the subgroup den(G) := ∩ D. Definition. For a cardinal κ ≥ 1, a topological group is in the class Ff (κ) [F(κ); F2(κ); Fad(κ), respectively] if some family of κ-many dense subgroups of G is independent and freel...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید