let $r$ be a commutative ring with identity. a proper ideal $p$ of $r$ is a $(n-1,n)$-$phi_m$-prime ($(n-1,n)$-weakly prime) ideal if $a_1,ldots,a_nin r$, $a_1cdots a_nin pbackslash p^m$ ($a_1cdots a_nin pbackslash {0}$) implies $a_1cdots a_{i-1}a_{i+1}cdots a_nin p$, for some $iin{1,ldots,n}$; ($m,ngeq 2$). in this paper several results concerning $(n-1,n)$-$phi_m$-prime and $(n-1,n)$-...