نتایج جستجو برای: vertex pi index
تعداد نتایج: 474882 فیلتر نتایج به سال:
The Padmakar-Ivan (PI) index is a Wiener-Szeged-like topological index which reflects certain structural features of organic molecules. The PI index of a graph G is the sum of all edges uv of G of the number of edges which are not equidistant from the vertices u and v. In this paper we obtain the second and third extremals of catacondensed hexagonal systems with respect to the PI index.
The Narumi-Katayama index was the first topological index defined by the product of some graph theoretical quantities. Let $G$ be a simple graph with vertex set $V = {v_1,ldots, v_n }$ and $d(v)$ be the degree of vertex $v$ in the graph $G$. The Narumi-Katayama index is defined as $NK(G) = prod_{vin V}d(v)$. In this paper, the Narumi-Katayama index is generalized using a $n$-ve...
a recently published paper [t. došlić, this journal 3 (2012) 25-34] considers the zagrebindices of benzenoid systems, and points out their low discriminativity. we show thatanalogous results hold for a variety of vertex-degree-based molecular structure descriptorsthat are being studied in contemporary mathematical chemistry. we also show that theseresults are straightforwardly obtained by using...
The vertex-edge Wiener index of a simple connected graph G is defined as the sum of distances between vertices and edges of G. Two possible distances D_1(u,e|G) and D_2(u,e|G) between a vertex u and an edge e of G were considered in the literature and according to them, the corresponding vertex-edge Wiener indices W_{ve_1}(G) and W_{ve_2}(G) were introduced. In this paper, we present exact form...
Let G V, E be a simple graph. A set S ⊆ V is a dominating set of G, if every vertex in V \S is adjacent to at least one vertex in S. Let Pi n be the family of all dominating sets of a path Pn with cardinality i, and let d Pn, j |P n|. In this paper, we construct Pi n, and obtain a recursive formula for d Pn, i . Using this recursive formula, we consider the polynomialD Pn, x ∑n i n/3 d Pn, i x ...
sufficient conditions on the zeroth-order general randic index for maximally edge-connected digraphs
let $d$ be a digraph with vertex set $v(d)$. for vertex $vin v(d)$, the degree of $v$,denoted by $d(v)$, is defined as the minimum value if its out-degree and its in-degree.now let $d$ be a digraph with minimum degree $deltage 1$ and edge-connectivity$lambda$. if $alpha$ is real number, then the zeroth-order general randic index is definedby $sum_{xin v(d)}(d(x))^{alpha}$. a digraph is maximall...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید