نتایج جستجو برای: vertex distance

تعداد نتایج: 274523  

2003
Marek Lassak

Let M be a planar centrally symmetric convex body. If H is an a‰ne regular hexagon of the smallest (the largest) possible area inscribed in M, then M contains (respectively, the interior of M does not contain) an additional pair of symmetric vertices of the a‰neregular 12-gon TH whose every second vertex is a vertex of H. Moreover, we can inscribe in M an octagon whose three pairs of opposite v...

Journal: :Discrete Mathematics 2010
Peter Dankelmann

Let G be a connected finite graph. The average distance μ(G) of G is the average of the distances between all pairs of vertices of G. For a positive integer k a k-packing of G is a subset S of the vertex set of G such that the distance between any two vertices in S is greater than k. The k-packing number βk(G) of G is the maximum cardinality of a k-packing of G. We prove upper bounds on the ave...

2017
PIERRE HANSEN MAOLIN ZHENG Maolin ZHENG M. ZHENG

An O (mn log n) algorithm is proposée to détermine a point of a network with m arcs and n vertices which minimizes the variance of the weighted distances to all vertices.

Journal: :Ural mathematical journal 2021

The vertex distance complement (VDC) matrix \(\textit{C}\), of a connected graph \(G\) with set consisting \(n\) vertices, is real symmetric \([c_{ij}]\) that takes the value \(n - d_{ij}\) where \(d_{ij}\) between vertices \(v_i\) and \(v_j\) for \(i \neq j\) 0 otherwise. spectrum subdivision join, \(G_1 \dot{\bigvee} G_2\) edge join \underline{\bigvee} regular graphs \(G_1\) \(G_2\) in terms ...

2009
Khaled M. Elbassioni Hans Raj Tiwary

Let P be an H-polytope in R with vertex set V . The vertex centroid is defined as the average of the vertices in V . We first prove that computing the vertex centroid of an H-polytope, or even just checking whether it lies in a given halfspace, are #P-hard. We also consider the problem of approximating the vertex centroid by finding a point within an ǫ distance from it and prove this problem to...

2008
Joan Gimbert Nacho López Joseph Ryan

The eccentricity e(u) of a vertex u in a digraph G is the maximum distance from u to any other vertex in G. A vertex v is an eccentric vertex of u if the distance from u to v is equal to e(u). The eccentric digraph ED(G) of a digraph G has the same vertex set as G, but with an arc from u to v in ED(G) if and only if v is an eccentric vertex of u in G. Given a positive integer k, the k iterated ...

Journal: :Physical review. E, Statistical, nonlinear, and soft matter physics 2003
Yuri O Popov Thomas A Witten

Solids dispersed in a drying drop migrate to the (pinned) contact line. This migration is caused by outward flows driven by the loss of the solvent due to evaporation and by geometrical constraint that the drop maintains an equilibrium surface shape with a fixed boundary. Here, in continuation of our earlier paper, we theoretically investigate the evaporation rate, the flow field, and the rate ...

Journal: :Graphs and Combinatorics 2002
N. Sridharan V. S. A. Subramanian M. D. Elias

For a graph G = (V , E), a subset D V ðGÞ is said to be distance two-dominating set in G if for each vertex u 2 V D, there exists a vertex v 2 D such that dðu; vÞ 2. The minimum cardinality of a distance two-dominating set in G is called a distance twodomination number and is denoted by c2ðGÞ. In this note we obtain various upper bounds for c2ðGÞ and characterize the classes of graphs attaining...

2009
S. Gago T. Madaras

The betweenness centrality of a vertex of a graph is the portion of shortest paths between all pairs of vertices passing through that vertex. We study selected general properties of this invariant and its relations to distance parameters (diameter, mean distance); also, there are studied properties of graphs whose vertices have the same value of betweenness centrality.

Journal: :J. Discrete Algorithms 2005
Serge Dulucq Hélène Touzet

We study the behavior of dynamic programming methods for the tree edit distance problem, such as [5,13]. We show that those two algorithms may be described as decomposition strategies. We introduce the general framework of cover strategies, and we provide an exact characterization of the complexity of cover strategies. This analysis allows us to define a new tree edit distance algorithm, that i...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->