Given a graph G = (V, E) of order n and an n-dimensional non-negative vector d = (d(1), d(2), . . . , d(n)), called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum S ⊆ V such that every vertex v in V \S (resp., in V ) has at least d(v) neighbors in S. The (total) vector domination is a generalization of many dominating set type problems,...