We study the asymptotic behavior for large time of solutions to the Cauchy problem for the generalized Benjamin-Ono (BO) equation: ut + (|u|ρ−1u)x + Huxx = 0, where H is the Hilbert transform, x, t ∈ R, when the initial data are small enough. If the power ρ of the nonlinearity is greater than 3, then the solution of the Cauchy problem has a quasilinear asymptotic behavior for large time. In the...