نتایج جستجو برای: self organizing feature map

تعداد نتایج: 937960  

2002
Merja Oja Janne Nikkilä Petri Törönen Eero Castrén Samuel Kaski

The usual first step in analyzing the large and high-dimensional data sets measured by microarrays is visual exploration. In this work self-organizing maps have been used to visualize similarity relationships of data samples. In all unsupervised data analysis methods the measure of similarity determines the result; we propose to use the learning metrics principle to derive a metric from interre...

The classification of fuzzy data is considered as the most challenging areas of data analysis and the complexity of the procedures has been obstacle to the development of new methods for fuzzy data analysis. However, there are significant advances in modeling systems in which fuzzy data are available in the field of mathematical programming. In order to exploit the results of the researches on ...

Background: The present study evaluated the lifestyle behavior patterns and its associations with demographic factors in the Iranian population. Methods: A total of 8244 people aged 25-70 years who participated in a national survey in 2011 were included in the study. Factors related to lifestyle (such as diet, physical activity, and tobacco use) have been collected using a questionnaire. A sel...

2013
Marco Vanetti Ignazio Gallo Angelo Nodari

In recent years a great amount of research has focused on algorithms that learn features from unlabeled data. In this work we propose a model based on the Self-Organizing Map (SOM) neural network to learn features useful for the problem of automatic natural images classification. In particular we use the SOM model to learn single-layer features from the extremely challenging CIFAR-10 dataset, c...

2006
Xin Jin Rongfang Bie

Digital music distribution industry has seen a tremendous growth in resent years. Tasks such us automatic music genre discrimination address new and exciting research challenges. Automatic music genre recognition involves issues like feature extraction and development of classifiers using the obtained features. As for feature extraction, we base on Self-Organizing Maps to map the high-dimension...

1997
Theo Sabisch Alistair Ferguson Hamid Bolouri

A large number of registration techniques rely on manually selected landmark points. A system based on neural principles has been developed to automatically extract landmark types and positional information from magnetic resonance images. A single self-organising map is used to develop the features (landmark types) so that the final landmarks represent statistically significant contour sections...

Journal: :CoRR 2009
Nikhil R. Pal Arijit Laha Jyotirmay Das

We propose a novel scheme for designing fuzzy rule based classifier. An SOFM based method is used for generating a set of prototypes which is used to generate a set of fuzzy rules. Each rule represents a region in the feature space that we call the context of the rule. The rules are tuned with respect to their context. We justified that the reasoning scheme may be different in different context...

2005
Xiaoyang Tan Songcan Chen Zhi-Hua Zhou Fuyan Zhang

While feature selection is very difficult for high dimensional, unstructured data such as face image, it may be much easier to do if the data can be faithfully transformed into lower dimensional space. In this paper, a new method is proposed to transform the high dimensional face images into low-dimensional SOM topological space, and then identify important local features of face images for fac...

Journal: :IEEE Transactions on Neural Networks 2006

2006
Apostolos Georgakis Haibo Li

A modification of the well-known PicSOM retrieval system is presented. The algorithm is based on a variant of the self-organizing map algorithm that uses bootstrapping. In bootstrapping the feature space is randomly sampled and a series of subsets are created that are used during the training phase of the SOM algorithm. Afterwards, the resulting SOM networks are merged into one single network w...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید