نتایج جستجو برای: seidel laplacian eigenvalues
تعداد نتایج: 31896 فیلتر نتایج به سال:
The Laplacian of a directed graph G is the matrix L(G) = 0(G) — A(G), where A(G) is the adjacency matrix of G and O(G) the diagonal matrix of vertex outdegrees. The eigenvalues of G are the eigenvalues of A(G). Given a directed graph G we construct a derived directed graph D(G) whose vertices are the oriented spanning trees of G. Using a counting argument, we describe the eigenvalues of D(G) an...
There are several reasons why the study of the spectrum of the Laplacian in a narrow neighborhood of an embedded graph is interesting. The graph can be embedded into a Euclidean space or it can be embedded into a manifold. In his pioneering work [3], Colin de Verdière used Riemannian metrics concentrated in a small neighborhood of a graph to prove that for every manifold M of dimension greater ...
Let G be a connected graph of order n with Laplacian eigenvalues [Formula: see text]. The Laplacian-energy-like invariant of G, is defined as [Formula: see text]. In this paper, we investigate the asymptotic behavior of the 3.6.24 lattice in terms of Laplacian-energy-like invariant as m, n approach infinity. Additionally, we derive that [Formula: see text], [Formula: see text] and [Formula: see...
Spectral methods that are based on eigenvectors and eigenvalues of discrete graph Laplacians, such as DiffusionMaps and Laplacian Eigenmaps, are often used for manifold learning and nonlinear dimensionality reduction. It was previously shown by Belkin&Niyogi (2007, Convergence of Laplacian eigenmaps, vol. 19. Proceedings of the 2006 Conference on Advances in Neural Information Processing System...
We consider higher-dimensional generalizations of the normalized Laplacian and the adjacency matrix of graphs and study their eigenvalues for the Linial–Meshulam model X(n, p) of random k-dimensional simplicial complexes on n vertices. We show that for p = Ω(log n/n), the eigenvalues of each of the matrices are a.a.s. concentrated around two values. The main tool, which goes back to the work of...
1 Laplacian Methods: An Overview 2 1.1 De nition: The Laplacian operator of a Graph . . . . . . . . . . 2 1.2 Properties of the Laplacian and its Spectrum . . . . . . . . . . . 4 1.2.1 Spectrum of L and e L: Graph eigenvalues and eigenvectors: 4 1.2.2 Other interesting / useful properties of the normalized Laplacian (Chung): . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 Laplacians of Weight...
Abstract. We generalize the definition and enumeration of spanning trees from the setting of graphs to that of arbitrary-dimensional simplicial complexes ∆, extending an idea due to G. Kalai. We prove a simplicial version of the Matrix-Tree Theorem that counts simplicial spanning trees, weighted by the squares of the orders of their top-dimensional integral homology groups, in terms of the Lapl...
Let G be a graph of order n such that ∑n i=0(−1)iaiλn−i and ∑n i=0(−1)ibiλn−i are the characteristic polynomials of the signless Laplacian and the Laplacian matrices of G, respectively. We show that ai ≥ bi for i = 0,1, . . . , n. As a consequence, we prove that for any α, 0 < α ≤ 1, if q1, . . . , qn and μ1, . . . ,μn are the signless Laplacian and the Laplacian eigenvalues of G, respectively,...
Let G be a simple connected graph with n ≤ 2 vertices and m edges, and let μ1 ≥ μ2 ≥...≥μn-1 >μn=0 be its Laplacian eigenvalues. The Kirchhoff index and Laplacian-energy-like invariant (LEL) of graph G are defined as Kf(G)=nΣi=1n-1<...
Limit points for the positive eigenvalues of the normalized Laplacian matrix of a graph are considered. Specifically, it is shown that the set of limit points for the j-th smallest such eigenvalues is equal to [0, 1], while the set of limit points for the j-th largest such eigenvalues is equal to [1, 2]. Limit points for certain functions of the eigenvalues, motivated by considerations for rand...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید