نتایج جستجو برای: second zagreb index
تعداد نتایج: 989171 فیلتر نتایج به سال:
Let G be a simple graph possessing n vertices and m edges. Let di be the degree of the i-th vertex of G , i = 1, . . . , n . The first Zagreb index M1 is the sum of d 2 i over all vertices of G . The second Zagreb index M2 is the sum di dj over pairs of adjacent vertices of G . In this paper we search for graph for which M1/n = M2/m , and show how numerous such graphs can be constructed. In add...
Abstract The molecular descriptors are a useful tool in the spectral graph, chemistry and several fields of mathematics. edge F-index is proposed for fuzzy graphs (FGs) here. Bounds this index calculated FGs. FG has been investigated given set vertices as having maximum F-index. Some relations with second Zagreb hyper-Zagreb established. For an isomorphic FGs, it shown that value same. some ope...
The concept of Zagreb eccentricity indices ( 1 E and 2 E ) was introduced in the chemical graph theory very recently. The eccentric connectivity index ( ) c ξ is a distance-based molecular structure descriptor that was used for mathematical modeling of biological activities of diverse nature. The second geometric-arithmetic index 2 ( ) GA was introduced in 2010, is found to be useful tool in QS...
Albertson [3] has defined the irregularity of a simple undirected graph G = (V,E) as irr(G) = ∑ uv∈E |dG(u)− dG(v)| , where dG(u) denotes the degree of a vertex u ∈ V . Recently, this graph invariant gained interest in the chemical graph theory, where it occured in some bounds on the first and the second Zagreb index, and was named the third Zagreb index [13]. For general graphs with n vertices...
In this paper we study the first Zagreb index in bucket recursive trees containing buckets with variable capacities. This model was introduced by Kazemi in 2012. We obtain the mean and variance of the first Zagreb index and introduce a martingale based on this quantity.
The hyper-Zagreb index of a connected graph G, denoted by HM(G), is defined as HM(G) = ∑ uv∈E(G) [dG(u) + dG(v)] where dG(z) is the degree of a vertex z in G. In this paper, we study the hyper-Zagreb index of four operations on graphs.
the chromatic number of a graph g, denoted by χ(g), is the minimum number of colors such that g can be colored with these colors in such a way that no two adjacent vertices have the same color. a clique in a graph is a set of mutually adjacent vertices. the maximum size of a clique in a graph g is called the clique number of g. the turán graph tn(k) is a complete k-partite graph whose partition...
the first ($pi_1$) and the second $(pi_2$) multiplicative zagreb indices of a connected graph $g$, with vertex set $v(g)$ and edge set $e(g)$, are defined as $pi_1(g) = prod_{u in v(g)} {d_u}^2$ and $pi_2(g) = prod_{uv in e(g)} {d_u}d_{v}$, respectively, where ${d_u}$ denotes the degree of the vertex $u$. in this paper we present a simple approach to order these indices for connected graphs on ...
let $gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. denote by $upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. in the classes of graphs $gamma_{n,kappa}$ and $upsilon_{n,beta}$, the elements having maximum augmented zagreb index are determined.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید