نتایج جستجو برای: relaxed gamma r cocoercive mappings
تعداد نتایج: 598166 فیلتر نتایج به سال:
let $r$ be an associative ring with identity and $z^*(r)$ be its set of non-zero zero divisors. the zero-divisor graph of $r$, denoted by $gamma(r)$, is the graph whose vertices are the non-zero zero-divisors of $r$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$. in this paper, we bring some results about undirected zero-divisor graph of a monoid ring ov...
A class of existence theorems in the context of solving a general class of nonlinear implicit inclusion problems are examined based on A-maximal relaxed accretive mappings in a real Banach space setting.
By applying the concept of partially relaxed -strong monotonicity of set-valued mappings due to author and the auxiliary variational inequality technique, some new predictor–corrector iterative algorithms for solving generalized mixed quasi-variational-like inclusions are suggested and analyzed. The convergence of the algorithms only need the continuity and the partially relaxed -stronglymonoto...
This paper deals with the introduction of a fuzzy over-relaxed proximal point iterative scheme based on H(·, ·)-cocoercivity framework for solving a generalized variational inclusion problem with fuzzy mappings. The resolvent operator technique is used to approximate the solution of generalized variational inclusion problem with fuzzy mappings and convergence of the iterative sequences generate...
We use Nadler’s theorem and the resolvent operator technique for m-accretive mappings to suggest an iterative algorithm for solving generalized nonlinear variational inclusions with relaxed strongly accretive mappings in Banach spaces. We prove the existence of solutions for our inclusions without compactness assumption and the convergence of the iterative sequences generated by the algorithm i...
System of nonlinear variational inclusion problems with (A, η)-maximal monotonicity in Banach spaces
This paper deals with a new system of nonlinear variational inclusion problems involving (A, η)-maximal relaxed monotone and relative (A, η)-maximal monotone mappings in 2-uniformly smooth Banach spaces. Using the generalized resolvent operator technique, the approximation solvability of the proposed problem is investigated. An iterative algorithm is constructed to approximate the solution of t...
Let $R$ be an associative ring with identity and $Z^*(R)$ be its set of non-zero zero divisors. The zero-divisor graph of $R$, denoted by $Gamma(R)$, is the graph whose vertices are the non-zero zero-divisors of $R$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$. In this paper, we bring some results about undirected zero-divisor graph of a monoid ring o...
let $r$ be a commutative ring with identity. let $g(r)$ denote the maximal graph associated to $r$, i.e., $g(r)$ is a graph with vertices as the elements of $r$, where two distinct vertices $a$ and $b$ are adjacent if and only if there is a maximal ideal of $r$ containing both. let $gamma(r)$ denote the restriction of $g(r)$ to non-unit elements of $r$. in this paper we study the various graphi...
Let $R$ be an associative ring with identity. A ring $R$ is called reversible if $ab=0$, then $ba=0$ for $a,bin R$. The quasi-zero-divisor graph of $R$, denoted by $Gamma^*(R)$ is an undirected graph with all nonzero zero-divisors of $R$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exists $0neq rin R setminus (mathrm{ann}(x) cup mathrm{ann}(y))$ such tha...
Let $R$ be a ring (not necessarily commutative) with nonzero identity. We define $Gamma(R)$ to be the graph with vertex set $R$ in which two distinct vertices $x$ and $y$ are adjacent if and only if there exist unit elements $u,v$ of $R$ such that $x+uyv$ is a unit of $R$. In this paper, basic properties of $Gamma(R)$ are studied. We investigate connectivity and the girth of $Gamma(R)$, where $...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید