نتایج جستجو برای: relative symmetric polynomials
تعداد نتایج: 501696 فیلتر نتایج به سال:
Riordan arrays are useful for solving the combinatorial sums by the help of generating functions. Many theorems can be easily proved by Riordan arrays. In this paper we consider the Pascal matrix and define a new generalization of Fibonacci polynomials called p, q -Fibonacci polynomials. We obtain combinatorial identities and by using Riordanmethodwe get factorizations of Pascal matrix involvin...
We prove generalized arithmetic-geometric mean inequalities for quasi-means arising from symmetric polynomials. The inequalities are satisfied by all positive, homogeneous symmetric polynomials, as well as a certain family of nonhomogeneous polynomials; this family allows us to prove the following combinatorial result for marked square grids. Suppose that the cells of a n × n checkerboard are e...
We investigate some properties of non-symmetric Jack, Hermite and Laguerre polynomials which occur as the polynomial part of the eigenfunctions for certain Calogero-Sutherland models with exchange terms. For the non-symmetric Jack polynomials, the constant term normalization N is evaluated using recurrence relations, and N is related to the norm for the non-symmetric analogue of the power-sum i...
We investigate some properties of non-symmetric Jack, Hermite and Laguerre polynomials which occur as the polynomial part of the eigenfunctions for certain Calogero-Sutherland models with exchange terms. For the non-symmetric Jack polynomials, the constant term normalization N η is evaluated using recurrence relations, and N η is related to the norm for the non-symmetric analogue of the power-s...
Symmetric polynomials and symmetric functions are ubiquitous in mathematics and mathematical physics. For example, they appear in elementary algebra (e.g. Viete’s Theorem), representation theories of symmetric groups and general linear groups over C or finite fields. They are also important objects to study in algebraic combinatorics. Via their close relations with representation theory, the th...
Let A be a connected integer symmetric matrix, i.e., A = (aij) ∈ Mn(Z) for some n, A = AT , and the underlying graph (vertices corresponding to rows, with vertex i joined to vertex j if aij 6= 0) is connected. We show that if all the eigenvalues of A are strictly positive, then tr(A) ≥ 2n− 1. There are two striking corollaries. First, the analogue of the Schur-SiegelSmyth trace problem is solve...
We know from Littlewood (1968) that the moments of order 4 of the classical Rudin–Shapiro polynomials Pn(z) satisfy a linear recurrence of degree 2. In a previous article, we developed a new approach, which enables us to compute exactly all the moments Mq(Pn) of even order q for q 32. We were also able to check a conjecture on the asymptotic behavior of Mq(Pn), namely Mq(Pn) ∼ Cq2, where Cq = 2...
1.2. The length on Ŵ 9 1.3. Reduction modulo W 9 1.4. More notations 11 1.5. Main definition 12 2. Polynomial representation 13 2.1. Macdonald polynomials 14 2.2. Symmetric polynomials 15 2.3. Using intertwiners 16 2.4. Spherical polynomials 18 2.5. The limit t → 0 19 3. Spherical and Whittaker functions 20 3.1. Gauss-type integrals 21 3.2. Global spherical function 22 3.3. Global Whittaker fun...
Recursive algebraic construction of two infinite families of polynomials in n variables is proposed as a uniform method applicable to every semisimple Lie group of rank n. Its result recognizes Chebyshev polynomials of the first and second kind as the special case of the simple group of type A1. The obtained not Laurent-type polynomials are equivalent to the partial cases of theMacdonald symmet...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید