نتایج جستجو برای: recurrent neural network rnn

تعداد نتایج: 942872  

2013
Jiang Guo

This report provides detailed description and necessary derivations for the BackPropagation Through Time (BPTT) algorithm. BPTT is often used to learn recurrent neural networks (RNN). Contrary to feed-forward neural networks, the RNN is characterized by the ability of encoding longer past information, thus very suitable for sequential models. The BPTT extends the ordinary BP algorithm to suit t...

Journal: :CoRR 2017
Min Joon Seo Sewon Min Ali Farhadi Hannaneh Hajishirzi

Inspired by the principles of speed reading, we introduce Skim-RNN, a recurrent neural network (RNN) that dynamically decides to update only a small fraction of the hidden state for relatively unimportant input tokens. Skim-RNN gives computational advantage over an RNN that always updates the entire hidden state. Skim-RNN uses the same input and output interfaces as a standard RNN and can be ea...

2002
Ieroham S. Baruch Alfredo del Carmen Martinez Q. Ruben Garrido Boyka Nenkova

The paper applied a Recurrent Neural Network (RNN) model in two Integral-Plus-State (IPS) schemes of real-time adaptive neural control. The proposed control modify and extend a previously published direct adaptive neural control scheme with one or two I-control terms, so to obtain a neural, IPS adaptive, offset compensational and trajectory tracking control. The control scheme contains only two...

2009
Jane M. Binner Thomas Elger

The purpose of this study is to contrast the forecasting performance of two non-linear models, a regime-switching vector autoregressive model (RS-VAR) and a recurrent neural network (RNN), to that of a linear benchmark VAR model. Our specific forecasting experiment is UK inflation and we utilize monthly data from 1969-2003. The RS-VAR and the RNN perform approximately on par over both monthly a...

2014
Daria Vazhenina Konstantin Markov

In this paper, we propose a novel language model for Russian large vocabulary speech recognition based on sequence memoizer modeling technique. Sequence memoizer is a long span text dependency model and was initially proposed for character language modeling. Here, we use it to build word level language model (LM) in ASR. We compare its performance with recurrent neural network (RNN) LM, which a...

2007
Alexander Förster Alex Graves Jürgen Schmidhuber

We describe a new algorithm for robot localization, efficient both in terms of memory and processing time. It transforms a stream of laser range sensor data into a probabilistic calculation of the robot’s position, using a bidirectional Long Short-Term Memory (LSTM) recurrent neural network (RNN) to learn the structure of the environment and to answer queries such as: in which room is the robot...

1999
Makoto Taiji Takashi Ikegami

A new approach for the study of social games and communications is proposed. Games are simulated between cognitive players who build the opponent’s internal model and decide their next strategy from predictions based on the model. In this paper, internal models are constructed by the recurrent neural network (RNN), and the iterated prisoner’s dilemma game is performed. The RNN allows us to expr...

Journal: :CoRR 2016
Youngjoo Seo Michaël Defferrard Pierre Vandergheynst Xavier Bresson

This paper introduces Graph Convolutional Recurrent Network (GCRN), a deep learning model able to predict structured sequences of data. Precisely, GCRN is a generalization of classical recurrent neural networks (RNN) to data structured by an arbitrary graph. Such structured sequences can represent series of frames in videos, spatio-temporal measurements on a network of sensors, or random walks ...

2016
Liang Lu Lingpeng Kong Chris Dyer Noah A. Smith Steve Renals

We study the segmental recurrent neural network for end-to-end acoustic modelling. This model connects the segmental conditional random field (CRF) with a recurrent neural network (RNN) used for feature extraction. Compared to most previous CRF-based acoustic models, it does not rely on an external system to provide features or segmentation boundaries. Instead, this model marginalises out all t...

Journal: :CoRR 2015
Jascha Sohl-Dickstein Diederik P. Kingma

Abstract We observe that the standard log likelihood training objective for a Recurrent Neural Network (RNN) model of time series data is equivalent to a variational Bayesian training objective, given the proper choice of generative and inference models. This perspective may motivate extensions to both RNNs and variational Bayesian models. We propose one such extension, where multiple particles...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید