نتایج جستجو برای: rbf neural network

تعداد نتایج: 834870  

Journal: :Neurocomputing 2007
Gholam Ali Montazer Reza Sabzevari H. Gh. Khatir

This paper presents a set of optimizations in learning algorithms commonly used for training radial basis function neural networks. These optimizations are applied to a RBF neural network used in identifying helicopter types processing their rotor sounds. The first method uses an optimum learning rate in each iteration of train process. This method increases the speed of learning process and al...

Journal: :IEEE transactions on neural networks 2000
Deng Jianping Narasimhan Sundararajan Paramasivan Saratchandran

A complex radial basis function neural network is proposed for equalization of quadrature amplitude modulation (QAM) signals in communication channels. The network utilizes a sequential learning algorithm referred to as complex minimal resource allocation network (CMRAN) and is an extension of the MRAN algorithm originally developed for online learning in real-valued radial basis function (RBF)...

2012
M. Sivakumar R. M. S. Parvathi

The present paper proposes a fault diagnosis methodology of three phase inverter circuit base on radial basis function (RBF) artificial neural network trained by particle swarm optimization (PSO) algorithm. Using the appropriate stimulus signal, fault features are extracted from efficient points in frequency response of the circuit directly and then a fault dictionary is created by collecting s...

2015
Gilberto Sierra

In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electrocardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complica...

2009
YAN HONG ZHANG

This paper proposes a new blind watermarking scheme based on discrete wavelet transform(DWT) domain. The method uses the HVS model, and radial basis function neural networks(RBF). RBF will be implemented while embedding and extracting watermark.The human visual system (HVS) model is used to determine the watermark insertion strength. The neural networks almost exactly recover the watermarking s...

Radial Basis Function Neural Networks (RBF NNs) are one of the most applicable NNs in the classification of real targets. Despite the use of recursive methods and gradient descent for training RBF NNs, classification improper accuracy, failing to local minimum and low-convergence speed are defects of this type of network. In order to overcome these defects, heuristic and meta-heuristic algorith...

2012
Shuangyin Liu Ji Chen Lihua Zeng

Water temperature is considered to be the most important parameter which can largely determine the aquaculture production of sea cucumbers, so it is extremely important to monitor and forecast the water temperature at different water depths. As the change of water temperature is a complex process which can not be exactly described with a certain formula, the artificial neural network characteri...

2016
Gurpreet Kaur Gurmeet Kaur

Artificial neural network based equalizers can be used for equalization in coherent optical OFDM systems. The artificial neural network based multilayer layer perceptron is a feed-forward network consists of one hidden layer with one or more hidden nodes between its input and output layers and can be trained by using back propagation algorithm. However, this algorithm suffers from slow converge...

2005
Yanling Lu Zhe Xu Junfei Qiao Jianmin Duan

Based on radial basis function neural network (RBF NN),the paper proposed a new algorithm for strip shape recognition. Compared with back propagation (BP) algorithm and improved least squares method (LSM), RBF NN shows excellent overall performance, such as learning speed, recognition precision and anti-interference capability. Copyright©2005IFAC Keyword: Strip Shape, Pattern Recognition, RBF,B...

Journal: :EURASIP J. Adv. Sig. Proc. 2007
Hadi Sadoghi Yazdi Javad Haddadnia Mojtaba Lotfizad

We have shown that duct modeling using the generalized RBF neural network (DM RBF), which has the capability of modeling the nonlinear behavior, can suppress a variable-frequency narrow band noise of a duct more efficiently than an FX-LMS algorithm. In our method (DM RBF), at first the duct is identified using a generalized RBF network, after that N stage of time delay of the input signal to th...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید