نتایج جستجو برای: radial basis function rbf
تعداد نتایج: 1583750 فیلتر نتایج به سال:
This paper presents the performance comparison of two architectures of neural networks: multi-layer perceptron (MLP) neural networks and radial basis function (RBF) neural networks on face recognition system (FRS). We are training MLP using different variants of back-propagation (BP) algorithm. AT&T database has been used for performance comparison. The BP is gradient descent based iterative al...
Communication Channel Equalization Using Complex-Valued Minimal Radial Basis Function Neural Network
A complex radial basis function neural network is proposed for equalization of quadrature amplitude modulation (QAM) signals in communication channels. The network utilizes a sequential learning algorithm referred to as complex minimal resource allocation network (CMRAN) and is an extension of the MRAN algorithm originally developed for online learning in real-valued radial basis function (RBF)...
A complex valued neural network is a neural network, which consists of complex valued input and/or weights and/or thresh olds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in image and visio...
The aim of this study was to determine the probability of working days (PWD) for tillage operation using weather data with Multiple Linear Regression (MLR) and Radial Basis Function (RBF) artificial networks. In both models, seven variables were considered as input parameters, namely minimum, average and maximum temperature, relative humidity, rainfall, wind speed, and evaporation on a daily ba...
The use of the K-means algorithm and the K-nearest neighbor heuristic in estimating the radial basis function (RBF) parameters may produce sub-optimal performance when the input vectors contain correlated components. This paper proposes to overcome this problem by incorporating full covariance matrices into the RBF structure and to use the expectation-maximi-zation (EM) algorithm to estimate th...
in many industrialized areas, the highest concentration of particulate matter, as a major concern on public health, is being felt worldwide problem. since the air pollution assessment and its evaluation with considering spatial dispersion analysis because of various factors are complex, in this paper, gis-based modeling approach was utilized to zoning pm2.5 dispersion over tehran, during one ye...
The Hartley transform, a real-valued alternative to the complex Fourier transform, is presented as an efficient tool for the analysis and simulation of earthquake accelerograms. This paper is introduced a novel method based on discrete Hartley transform (DHT) and radial basis function (RBF) neural network for generation of artificial earthquake accelerograms from specific target spectrums. Acce...
We propose a method for optimizing the complexity of Radial basis function (RBF) networks. The method involves two procedures: adaptation (training) and selection. The first procedure adaptively changes the locations and the width of the basis functions and trains the linear weights. The selection procedure performs the elimination of the redundant basis functions using an objective function ba...
Convolutional Radial Basis Function (RBF) networks are introduced for smoothing out irregularly sampled signals. Our proposed technique involves training a RBF network and then convolving it with a Gaussian smoothing kernel in an analytical manner. Since the convolution results in an analytic form, the computation necessary for numerical convolution is avoided. Convolutional RBF networks need t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید