نتایج جستجو برای: quasi prime ideal

تعداد نتایج: 210436  

2014
KEITH CONRAD

Let O be an order in the number field K. When O 6= OK , O is Noetherian and onedimensional, but is not integrally closed, so it has at least one nonzero prime ideal that’s not invertible and O doesn’t have unique factorization of ideals. That is, some nonzero ideal in O does not have a unique prime ideal factorization. We are going to define a special ideal in O, called the conductor, that is c...

2013
Shahida Bashir Jabran Mehmood Muhammad Shabir

In this paper, we initiate the study of prime bi-ideals (fuzzy bi-ideals) in semirings. We define strongly prime, prime, semiprime, irreducible and strongly irreducible bi-ideals in semirings. We also define strongly prime, semiprime, irreducible, strongly irreducible fuzzy bi-ideals of semirings. We characterize those semirings in which each bi-ideal (fuzzy bi-ideal) is prime (strongly prime).

The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.

2000
AMELIA TAYLOR

Generic linkage is used to compute a prime ideal such that the radical of the initial ideal of the prime ideal is equal to the radical of a given codimension two monomial ideal that has a Cohen-Macaulay quotient ring.

Journal: :Topology and its Applications 2011

A ring is called a Gelfand ring (pm ring ) if each prime ideal is contained in a unique maximal ideal. For a Gelfand ring R with Jacobson radical zero, we show that the following are equivalent: (1) R is Artinian; (2) R is Noetherian; (3) R has a finite Goldie dimension; (4) Every maximal ideal is generated by an idempotent; (5) Max (R) is finite. We also give the following resu1ts:an ideal...

An ideal I of a ring R is called right Baer-ideal if there exists an idempotent e 2 R such that r(I) = eR. We know that R is quasi-Baer if every ideal of R is a right Baer-ideal, R is n-generalized right quasi-Baer if for each I E R the ideal In is right Baer-ideal, and R is right principaly quasi-Baer if every principal right ideal of R is a right Baer-ideal. Therefore the concept of Baer idea...

A module M is called epi-retractable if every submodule of M is a homomorphic image of M. Dually, a module M is called co-epi-retractable if it contains a copy of each of its factor modules. In special case, a ring R is called co-pli (resp. co-pri) if RR (resp. RR) is co-epi-retractable. It is proved that if R is a left principal right duo ring, then every left ideal of R is an epi-retractable ...

Journal: :International Journal of Mathematics and Mathematical Sciences 2021

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید