نتایج جستجو برای: pseudo valuation ring
تعداد نتایج: 186705 فیلتر نتایج به سال:
Let $V$ be a valuation domain with quotient field $K$. We show how to describe all extensions of $K(X)$ when the $V$-adic completion $\widehat{K}$ is algebraically closed, generalizing similar result obtained by Ostrowski in case one-dimensional domains. This accomplished realizing such means pseudo-monotone sequences, generalization pseudo-convergent sequences introduced Chabert. also that rin...
For the whole paper, K denotes an algebraically closed field endowed with a nontrivial non-archimedean complete absolute value | |. The corresponding valuation is v := − log | | with value group Γ := v(K). The valuation ring is denoted by K. Note that the residue field K̃ is algebraically closed. In Theorem 1.3, §8 and in the second part of §9, we start with a field K endowed with a discrete val...
We prove R = T theorems for certain reducible residual Galois representations. We answer in the positive a question of Gross and Lubin on whether certain Hecke algebras T are discrete valuation rings. In order to prove these results we determine (using the theory of Breuil modules) when two finite flat group schemes G and H of order p over an arbitrarily tamely ramified discrete valuation ring ...
We describe an alternate construction of some of the basic rings introduced by Fontaine in p-adic Hodge theory. In our construction, the central role is played by the ring of p-typical Witt vectors over a p-adic valuation ring, rather than theWitt vectors over a ring of positive characteristic. This suggests the possibility of forming a meaningful global analogue of p-adic Hodge theory.
We prove R = T theorems for certain reducible residual Galois representations. We answer in the positive a question of Gross and Lubin on whether certain Hecke algebras T are discrete valuation rings. In order to prove these results we determine (using the theory of Breuil modules) when two finite flat group schemes G and H of order p over an arbitrarily tamely ramified discrete valuation ring ...
We study transcendency properties for graded field extension and give an application to valued field extensions. 1. Introduction. An important tool to study rings with valuation is the so-called associated graded ring construction: to a valuation ring R, we can associate a ring gr(R) graded by the valuation group. This ring is often easier to study, and one tries to lift properties back from gr...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید