نتایج جستجو برای: plant transformation sclerotinia sclerotiorum

تعداد نتایج: 609366  

Journal: :The Journal of antibiotics 1977
H Schmitz C A Claridge

Antitumor antibiotics of the olivomycin and chromomycin class were transformed when incubated with a culture of Whetzelinia sclerotiorum. The products, when purified by counter-current distribution and column chromatography, were shown, by their physical properties, to be the deacylated analogues.

2011
Brett Williams Mehdi Kabbage Hyo-Jin Kim Robert Britt Martin B. Dickman

Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA). Our recent work indicated that this fungus and more specifically OA, can induce apoptotic-like programmed cell death (PCD) in plant hosts, this induction of PCD and disease requires generation of react...

Canola (Brassica napus L.) is an important oilseed crop. A serious problem in cultivation of this crop andyield loss, are due to fungal disease stem rot caused by Sclerotinia sclerotiorum. The pathogenesis-related(PR) proteins have the potential for enhancing resistance against fungal pathogen. Thaumatin-like proteins(TLPs) have been shown to have antifungal activity on variou...

Journal: :Virology 2014
Mahmoud E Khalifa Michael N Pearson

A novel mycovirus tentatively assigned the name Sclerotinia sclerotiorum hypovirus 2 (SsHV2/5472) was detected in the phytopathogenic fungus Sclerotinia sclerotiorum. The genome is 14581 nucleotides (nts) long, excluding the poly (A) tail. A papain-like cysteine protease (Pro), an RNA-dependent RNA polymerase (RdRp) and a helicase (Hel) domain were detected in the polyprotein. Phylogenetic anal...

2006
S. Nakkeeran Y. Zhang S. Savchuk

Four bacterial strains, Pseudomonas chlororaphis (PA-23), Bacillus amyloliquefaciens (BS6), Pseudomonas sp. (DF41) and B. amyloliquefaciens (E16) which had been found to have biocontrol activity in vitro assays against Sclerotinia sclerotiorum, the causal agent of stem rot of canola, were tested for their efficacy in greenhouse and field conditions. Microscopic studies showed that P. chlororaph...

Journal: :Fungal genetics and biology : FG & B 2008
Linda M Kohn Michelle R Schaffer James B Anderson Niklaus J Grünwald

The stability of routinely used, population genetic markers through approximately 1 year of continuous laboratory growth was investigated in the common, plant pathogentic ascomycete Sclerotinia sclerotiorum. Given reports of accelerated mutation rates at higher temperatures, both a permissive temperature, 22 degrees C, and a temperature at the high end of tolerance, 30 degrees C, were employed....

2015
Zhan-Bin Sun Man-Hong Sun Shi-Dong Li

Clonostachys rosea is a mycoparasite that has shown great potential in controlling various plant fungal pathogens. In order to find mycoparasitism-related genes in C. rosea, the transcriptome of the efficient isolate 67-1 in association with sclerotia of Sclerotinia sclerotiorum was sequenced and analysed. The results identified 26,351 unigenes with a mean length of 1,102 nucleotides, among whi...

Journal: :Mycobiology 2015
Ze-Ping Luo Hai-Yan Lin Wen-Bing Ding Hua-Liang He You-Zhi Li

Sixty-one endophytic fungus strains with different colony morphologies were isolated from the leaves, stems and roots of Tephrosia purpurea with colonization rates of 66.95%, 37.50%, and 26.92%, respectively. Based on internal transcribed spacer sequence analysis, 61 isolates were classified into 16 genera belonging to 3 classes under the phylum Ascomycota. Of the 61 isolates, 6 (9.84%) exhibit...

Journal: :Journal of experimental botany 2013
Jun Zhou Aizhen Sun Da Xing

Sclerotinia sclerotiorum can initially suppress host oxidative burst to aid infection establishment, but later promotes reactive oxygen species (ROS) generation as proliferation advances. Here, it was shown that the cellular redox status can be modulated by thiamine to protect Arabidopsis thaliana against Sclerotinia at the early stages of infection. The initial inhibition of host ROS generatio...

2014
Peter C. Loewen Jack Switala W. G. Dilantha Fernando Teri de Kievit

Pseudomonas brassicacearum DF41, a Gram-negative soil bacterium, is able to suppress the fungal pathogen Sclerotinia sclerotiorum through a process known as biological control. Here, we present a 6.8-Mb assembly of its genome, which is the second fully assembled genome of a P. brassicacearum strain.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید