نتایج جستجو برای: neural network nn
تعداد نتایج: 839588 فیلتر نتایج به سال:
Neural networks have recently been proposed for multi-label classification because they are able to capture and model label dependencies in the output layer. In this work, we investigate limitations of BP-MLL, a neural network (NN) architecture that aims at minimizing pairwise ranking error. Instead, we propose to use a comparably simple NN approach with recently proposed learning techniques fo...
A recent “third wave” of Neural Network (NN) approaches now delivers state-of-the-art performance in many machine learning tasks, spanning speech recognition, computer vision, and natural language processing. Because these modern NNs often comprise multiple interconnected layers, this new NN research is often referred to as deep learning. Stemming from this tide of NN work, a number of research...
This paper presents Neural Network (NN) model of Polymer Electrolyte Membran (PEM) Fuel Cell for electric vehicle. The NN model simplifies the conventional model that considered thermodynamics, electrochemistry, hydrodynamics and mass transfer theory. The NN has a multilayer feed forward network structure and is trained using a back propagation learning rule. The NN model is used to predict the...
Developing a stable early warning system (EWS) model that is capable to give an accurate prediction is a challenging task. This paper introduces k-nearest neighbour (k-NN) method which never been applied in predicting currency crisis before with the aim of increasing the prediction accuracy. The proposed k-NN performance depends on the choice of a distance that is used where in our analysis; we...
In this paper, we investigate the problem of Neural Network (NN) observer for nonlinear systems. Therefore, it can be applied to systems with higher degree of nonlinearity with any a priory knowledge about system dynamics. The proposed neuro-observer is a three-layer feedforward neural network, which is trained extensively with the error backpropagation learning algorithm including a correction...
Neural network (NN) is a representative data-driven method, which is one of prognostics approaches that is to predict future damage/degradation and the remaining useful life of in-service systems based on the damage data measured at previous usage conditions. Even though NN has a wide range of applications, there are a relatively small number of literature on prognostics compared to the usage i...
The paper discusses the results obtained to predict reinforcement in singly reinforced beam using Neural Net (NN), Support Vector Machines (SVM’s) and Tree Based Models. Major advantage of SVM’s over NN is of minimizing a bound on the generalization error of model rather than minimizing a bound on mean square error over the data set as done in NN. Tree Based approach divides the problem into a ...
Abstract The bioelectric potentials associated with muscle activity constitute the electromyogram (EMG). EMG signal is being used in biomedical applications in order to detect abnormal muscle electrical activities that occur in many diseases and conditions like muscular dystrophy, inflammation of muscles, pinched nerves, peripheral nerve damages, amyotrophic lateral sclerosis, disc herniation, ...
Design of Model Reference Adaptive Intelligent Controller Using Neural Network for Nonlinear Systems
In this paper a new approach to a neural network-based model reference adaptive intelligent controller is proposed. In this scheme, the intelligent supervisory loop is incorporated into the conventional model reference adaptive controller framework by utilizing an online growing multilayer back propagation neural network structure in parallel with it. The idea is to control the plant by convent...
Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) has been extensively used in aircraft applications like autopilot, to provide better navigation, even in the absence of GPS. Even though Kalman Filter (KF) based GPS/INS integration provides a robust solution to navigation, it requires prior knowledge of the error model of INS, which increases the complexity of ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید