نتایج جستجو برای: navier stokes equation
تعداد نتایج: 254189 فیلتر نتایج به سال:
It is shown that expansion waves for the compressible Navier-Stokes equations are nonlinearly stable. The expansion waves are constructed for the compressible Euler equations based on the inviscid Burgers equation. Our result shows that Navier-Stokes equations and Euler equations are timeasymptotically equivalent on the level of expansion waves. The result is proved using the energy method, mak...
We discuss the regularity of solutions of 2D incompressible NavierStokes equations forced by singular forces. The problem is motivated by the study of complex fluids modeled by the Navier-Stokes equations coupled to a nonlinear Fokker-Planck equation describing microscopic corpora embedded in the fluid. This leads naturally to bounded added stress and hence to W forcing of the Navier-Stokes equ...
driven by white noise Ẇ . Under minimal assumptions on regularity of the coefficients and random forces, the existence of a global weak (martingale) solution of the stochastic Navier–Stokes equation is proved. In the two-dimensional case, the existence and pathwise uniqueness of a global strong solution is shown. A Wiener chaosbased criterion for the existence and uniqueness of a strong global ...
We present a finite element (FEM) simulation method for pore geometry fluid flow. Within the pore space, we solve the single-phase Reynold’s lubrication equation—a simplified form of the incompressible Navier–Stokes equation yielding the velocity field in a two-step solution approach. (1) Laplace’s equation is solved with homogeneous boundary conditions and a right-hand source term, (2) pore pr...
In this paper we study a fractional diffusion Boussinesq model which couples a Navier-Stokes type equation with fractional diffusion for the velocity and a transport equation for the temperature. We establish global well-posedness results with rough initial data.
We prove the strong Feller property and exponential mixing for 3D stochastic Navier-Stokes equation driven by mildly degenerate noises (i.e. all but finitely many Fourier modes are forced) via Kolmogorov equation approach.
We study the local exponential stabilization, near a given steady-state flow, of solutions of the Navier-Stokes equations in a bounded domain. The control is performed through a Dirichlet boundary condition. We apply a linear feedback controller, provided by a well-posed infinite dimensional Riccati equation. We give a characterization of the domain of the closed-loop operator which is obtained...
The aim of this dissertation is to study stochastic Navier-Stokes equations with a fractional Brownian motion noise. The second chapter will introduce the background results on fractional Brownian motions and some of their properties. The third chapter will focus on the Stokes operator and the semigroup generated by this operator. The Navier-Stokes equations and the evolution equation setup wil...
We prove global existence for a nonlinear Smoluchowski equation (a nonlinear Fokker-Planck equation) coupled with Navier-Stokes equations in 2d. The proof uses a deteriorating regularity estimate in the spirit of [5] (see also [1])
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید