نتایج جستجو برای: namely genetic algorithm ga and particle swarm optimization pso are developed

تعداد نتایج: 17214482  

2017
Bin Jiao Shaobin Yan

By taking advantage of niche sharing scheme,we propose a novel co-evolutionary particle swarm optimization algorithm (NCPSO) to solve permutation flow shop scheduling problem. As the core of this algorithm, niche sharing scheme maximizes the diversity of population and hence improves the quality of individuals. To evaluate the performance of the proposed algorithm, we have use eight Taillard in...

In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced‎. ‎In this approach‎, ‎first a discretized form of the time-control space is considered and then‎, ‎a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...

Mohammad Reza Meybodi Mojtaba Gholamian,

So far various methods for optimization presented and one of most popular of them are optimization algorithms based on swarm intelligence and also one of most successful of them is Particle Swarm Optimization (PSO). Prior some efforts by applying fuzzy logic for improving defects of PSO such as trapping in local optimums and early convergence has been done. Moreover to overcome the problem of i...

2014
K. Lenin B. Ravindranath Reddy M. Surya Kalavathi

This paper presents a hybrid particle swarm algorithm for solving the multiobjective reactive power dispatch problem. Modal analysis of the system is used for static voltage stability assessment. Loss minimization and maximization of voltage stability margin are taken as the objectives. Generator terminal voltages, reactive power generation of the capacitor banks and tap changing transformer se...

2006
Laura Diosan Mihai Oltean

A new model for evolving the structure of a Particle Swarm Optimization (PSO) algorithm is proposed in this paper. The model is a hybrid technique that combines a Genetic Algorithm (GA) and a PSO algorithm. Each GA chromosome is an array encoding a meaning for updating the particles of the PSO algorithm. The evolved PSO algorithm is compared to a human-designed PSO algorithm by using ten artifi...

2015
Shubham Tiwari Abhishek Maurya

Economic load dispatch is a non linear optimization problem which is of great importance in power systems . While analytical methods suffer from slow conversion and curse of dimensionality particle swarm optimization can be an efficient alternative to solve large scale non linear optimization problem.A lot of advancements have been done to modify this algorithm. This paper presents an overview ...

In this paper, a hub covering location problem is considered. Hubs, which are the most congested part of a network, are modeled as M/M/C queuing system and located in placeswhere the entrance flows are more than a predetermined value.A fuzzy constraint is considered in order to limit the transportation time between all origin-destination pairs in the network.On modeling, a nonlinear mathematica...

2009
Cecı́lia Reis

Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetic. The basic concept of GAs is designed to simulate processes in natural system necessary for evolution, specifically those that follow the principles first laid down by Charles Darwin of survival of the fittest. On the other hand, Particle swarm optimization (PSO) is ...

2008
R. A. Thakker M. B. Patil

In this paper, parameter extraction for PSP MOSFET model is demonstrated using Particle Swarm Optimization (PSO) algorithm. I-V measurements are taken on 65 nm technology NMOS devices. For the purpose of comparison, parameter extraction is also carried out using Genetic Algorithm (GA). It is shown that PSO algorithm gives better agreement between measurements and model in comparison to GA and w...

2015
Jyotsana Dixit Abha Choubey

Data mining technology has emerged as a means of discovering hidden patterns and trends among large volumes of data and thus it can be considered as an important step in the knowledge discovery (KDD) process. In the area of data mining the task of Association rule (AR) mining is to discover interesting relations among various items in the database. One of the subfield of artificial intelligence...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید