Dave Benson, in [2], conjectured that for any finite group G and any prime p the Castelnuovo-Mumford regularity of the cohomology ring, H(G,Fp), is zero. He showed that reg(H(G,Fp)) ≥ 0 and succeeded in proving equality when the difference between the dimension and the depth is at most two. The purpose of this paper is to prove Benson’s Regularity Conjecture as a corollary of the following result.