نتایج جستجو برای: multiplicative second zagreb index

تعداد نتایج: 1001246  

2016
Bommanahal Basavanagoud Shreekant Patil Dalibor Fronček

In this note, we obtain the expressions for multiplicative Zagreb indices and coindices of derived graphs such as a line graph, subdivision graph, vertex-semitotal graph, edge-semitotal graph, total graph and paraline graph.

Journal: :Journal of Mathematics 2021

The use of graph theory can be visualized in nanochemistry, computer networks, Google maps, and molecular which are common areas to elaborate application this subject. In a numeric number (topological index) is used estimate the biological, physical, structural properties chemical compounds that associated with graph. paper, we compute first second multiplicative Zagreb indices ( <math xmlns="h...

2012
Muhuo Liu Bolian Liu

Given a tree T = (V,E), the second Zagreb index of T is denoted by M2(T ) = ∑ uv∈E d(u)d(v) and the Wiener polarity index of T is equal to WP (T ) = ∑ uv∈E(d(u)−1)(d(v)−1). Let π = (d1, d2, ..., dn) and π′ = (d1, d2, ..., dn) be two different non-increasing tree degree sequences. We write π π′, if and only if ∑n i=1 di = ∑n i=1 d ′ i, and ∑j i=1 di ≤ ∑j i=1 d ′ i for all j = 1, 2, ..., n. Let Γ...

Journal: :International Journal of Applied Mathematics 2023

Journal: :iranian journal of mathematical chemistry 2015
s. klavžar e. deutsch

let $g$ be a graph and let $m_{ij}(g)$, $i,jge 1$, be the number of edges $uv$ of $g$ such that ${d_v(g), d_u(g)} = {i,j}$. the {em $m$-polynomial} of $g$ is introduced with $displaystyle{m(g;x,y) = sum_{ile j} m_{ij}(g)x^iy^j}$. it is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...

Journal: :iranian journal of mathematical chemistry 2010
g. h. fath–tabar a. azad n. elahinezhad

topological indices are numerical parameters of a graph which characterize its topology. inthis paper the pi, szeged and zagreb group indices of the tetrameric 1,3–adamantane arecomputed.

2014
Mikhail Goubko

We derive sharp lower bounds for the first and the second Zagreb indices (M1 and M2 respectively) for trees and chemical trees with the given number of pendent vertices and find optimal trees. M1 is minimized by a tree with all internal vertices having degree 4, while M2 is minimized by a tree where each “stem” vertex is incident to 3 or 4 pendent vertices and one internal vertex, while the res...

Journal: :Open Journal of Discrete Mathematics 2016

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید