نتایج جستجو برای: multi layer perceptron network

تعداد نتایج: 1313627  

Journal: :فیزیک زمین و فضا 0
میر رضا غفاری رزین دانشگاه صنعتی خواجه نصیرالدین طوسی دانشکده نقشه برداری گروه ژئودزی بهزاد وثوقی استاد گروه ژئودزی دانشکده نقشه برداری دانشگاه خواجه نصیرالدین طوسی

in this paper, two methods have been used: multi-layer perceptron artificial neural network (ann-mlp) and universal kriging to estimate of velocity field. neural network is an information processing system which is formed by a large number of simple processing elements, known as artificial nerves. it is formed by a number of nodes and weights connecting the nodes. the input data are multiplied ...

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

Journal: Desert 2009
H. Memarian Khalilabad K. Zakikhani S. Feiznia

Abstract Erosion and sedimentation are the most complicated problems in hydrodynamic which are very important in water-related projects of arid and semi-arid basins. For this reason, the presence of suitable methods for good estimation of suspended sediment load of rivers is very valuable. Solving hydrodynamic equations related to these phenomenons and access to a mathematical-conceptual mode...

2001
Fabien Langlet Hasan Abdulkader Daniel Roviras L. Lapierre Francis Castanie

In this paper, we present a neural network architecture that belongs to the multi-layer perceptron family, associated with two different algorithms: the ordinary gradient and the natural gradient, we compare performances of those algorithms. The identification of a non-normalized power amplifier yielded to the introduction of an additional weight in the classical multilayer perceptron structure...

Ali Gholami Ali Salehi kamran Mohsenifar,

To estimate the Cation Exchange Capacity (CEC), indirect manner used of Pedotransfer Functions (PTFs). CEC is one of the important soil fertility factors, and not measured directly because it is costly and time consuming. Thus, used from regression equations between easily and non-easily soil properties. The purpose of this research, is develop the PTFs for CEC, with use of easily available soi...

1992
George Bolt James Austin Gary Morgan

This report examines the fault tolerance of multi-layer perceptron networks. First, the operation of a single perceptron unit is analysed, and it is found that they are highly fault tolerant. This suggests that neural networks composed from these units could in theory be extremely reliable. The multi-layer perceptron network was then examined, but surprisingly was found to be non-fault tolerant...

ژورنال: علوم آب و خاک 2012
روح اله رضایی ارشد, , علیرضا جعفرنژادی, , غلامعباس صیاد, , مسعود مظلوم, , مهدی شرفا, ,

Direct measurement of soil hydraulic characteristics is costly and time-consuming. Also, the method is partly unreliable due to soil heterogeneity and laboratory errors. Instead, soil hydraulic characteristics can be predicted using readily available data such as soil texture and bulk density using pedotransfer functions (PTFs). Artificial neural networks (ANNs) and statistical regression are t...

The present paper presented a methodology for prioritizing the innovative and entrepreneurial indicators using Multi Criteria Decision Making (MCDM) and Artificial Neural Networks (ANNs), taking into account three individual, organizational and cultural dimensions simultaneously in decision making procedure. This methodology has two main advantages: first, the speed of operation in the accounti...

2010
Mutasem khalil Sari Alsmadi Khairuddin Bin Omar Shahrul Azman Noah

A multilayer perceptron is a feed forward artificial neural network model that maps sets of input data onto a set of appropriate output. It is a modification of the standard linear perceptron in that it uses three or more layers of neurons (nodes) with nonlinear activation functions and is more powerful than the perceptron in that it can distinguish data that is not linearly separable, or separ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید