نتایج جستجو برای: mopso nsga

تعداد نتایج: 2497  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده برق و کامپیوتر 1394

در این تحقیق با تعیین همزمان این سه پارامتر به صورت بهینه و توسط الگوریتم های هوشمند بهینه سازی، به بررسی تاثیر این محدود کننده ها روی کاهش جریان اتصال کوتاه و بهبود قابلیت اطمینان شبکه قدرت پرداخته می شود. از سه الگوریتم بهینه سازی چند هدفه که به ترتیب عبارتند از: الگوریتم تکاملی چند هدفه بر پایه تجزیه(moea/d)، الگوریتم انبوه ذرات چند هدفه(mopso) و الگوریتم ژنتیک چند هدفه با مرتب سازی نامغلوب-...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده برق و کامپیوتر 1391

در این پایان نامه، در ابتدا، دو الگوریتم جدید بر اساس الگوریتم های جمعیت ذرات و جستجوی هارمونی برای حل مسائل بهینه سازی چندهدفه ارائه شده است. در ادامه این پایان نامه، الگوریتم چندهدفه مبتنی بر جستجوی هارمونی، برای خوشه بندی داده ها و قطعه بندی تصاویر مورد استفاده قرار گرفته است. نتایج برای بررسی کارایی الگوریتم های چندهدفه پیشنهادی، با ارائه توابع آزمون استاندارد و توسط شاخص های استاندارد با ا...

 In this research, a tri-objective mathematical model is proposed for the Transportation-Location-Routing problem. The model considers a three-echelon supply chain and aims to minimize total costs, maximize the minimum reliability of the traveled routes and establish a well-balanced set of routes. In order to solve the proposed model, four metaheuristic algorithms, including Multi-Objective Gre...

2004
Jonathan E. Fieldsend

This study compares a number of selection regimes for the choosing of global best (gbest) and personal best (pbest) for swarm members in multi-objective particle swarm optimisation (MOPSO). Two distinct gbest selection techniques are shown to exist in the literature, those that do not restrict the selection of archive members and those with ‘distance’ based gbest selection techniques. Theoretic...

Journal: :Inf. Sci. 2007
Praveen Kumar Tripathi Sanghamitra Bandyopadhyay Sankar K. Pal

In this article we describe a novel Particle Swarm Optimization (PSO) approach to multi-objective optimization (MOO), called Time Variant Multi-Objective Particle Swarm Optimization (TV-MOPSO). TV-MOPSO is made adaptive in nature by allowing its vital parameters (viz., inertia weight and acceleration coefficients) to change with iterations. This adaptiveness helps the algorithm to explore the s...

2012
Sudhansu Kumar Mishra Ganapati Panda Babita Majhi Ritanjali Majhi

In conventional mean-variance model of portfolio optimization problem the expected return is taken as the mean of the past returns. This assumption is not correct and hence the method leads to poor portfolio optimization performance. Hence an alternative but efficient method is proposed in which the mean and variance of expected return are first predicted with a low complexity functional link a...

2016
Mahesh P. Nagarkar Gahininath J. Vikhe Patil Rahul N. Zaware Patil

In this paper a nonlinear quarter car suspension-seat-driver model was implemented for optimum design. A nonlinear quarter car model comprising of quadratic tyre stiffness and cubic stiffness in suspension spring, frame, and seat cushion with 4 degrees of freedom (DoF) driver model was presented for optimization and analysis. Suspension system was aimed to optimize the comfort and health criter...

Journal: :Applied Mathematics and Computer Science 2017
Cili Zuo Lianghong Wu Zhao-Fu Zeng Hua-Liang Wei

The fruit fly optimization algorithm (FOA) is a global optimization algorithm inspired by the foraging behavior of a fruit fly swarm. In this study, a novel stochastic fractal model based fruit fly optimization algorithm is proposed for multiobjective optimization. A food source generating method based on a stochastic fractal with an adaptive parameter updating strategy is introduced to improve...

2016
João Soares Nuno Borges Zita Vale

In this paper three metaheuristics are used to solve a smart grid multi-objective energy management problem with conflictive design: how to maximize profits and minimize carbon dioxide (CO2) emissions, and the results compared. The metaheuristics implemented are: weighted particle swarm optimization (W-PSO), multi-objective particle swarm optimization (MOPSO) and non-dominated sorting genetic a...

2011
Nikhil Padhye Kalyanmoy Deb

In this paper, we describe a systematic multi-objective problem solving approach, simulataneosly minimizing two conflicting goals average surface roughness ‘Ra’ and build time ‘T ’, for object manufacturing in FDM process by usage of evolutionary algorithms. Popularly used multi-objective genetic algorithm NSGA-II and recently proposed multi-objective particle swarm optimization (MOPSO) algorit...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید