نتایج جستجو برای: minimal dominating graph
تعداد نتایج: 350698 فیلتر نتایج به سال:
Our aim here is to address the problem of decomposing a whole network into a minimal number of ego–centered subnetworks. For this purpose, the network egos are picked out as the members of a minimum dominating set of the network. However, to find such an efficient dominating ego–centered construction, we need to be able to detect all the minimum dominating sets and to compare all the correspond...
If each minimal dominating set in a graph is minimum set, then the called well-dominated. Since seminal paper on well-dominated graphs appeared 1988, structure of from several restricted classes has been studied. In this we give complete characterization nontrivial direct products that are We prove if strong product well-dominated, both its factors When one graph, other factor being also suffic...
A two-valued function f defined on the vertices of a graph G (V, E), I : V -+ {-I, I}, is a signed dominating function if the sum of its function values over any closed neighborhood is at least one. That is, for every v E V, f(N[v]) 2: 1, where N(v] consists of v and every vertex adjacent to v. The of a signed dominating function is ICV) = L f( v), over all vertices v E V. The signed domination...
for any integer $kge 1$, a minus $k$-dominating function is a function $f : v (g)rightarrow {-1,0, 1}$ satisfying $sum_{winn[v]} f(w)ge k$ for every $vin v(g)$, where $n(v) ={u inv(g)mid uvin e(g)}$ and $n[v] =n(v)cup {v}$. the minimum ofthe values of $sum_{vin v(g)}f(v)$, taken over all minus$k$-dominating functions $f$, is called the minus $k$-dominationnumber and i...
abstract. let $l$ be a lattice with the least element $0$. an element $xin l$ is a zero divisor if $xwedge y=0$ for some $yin l^*=lsetminus left{0right}$. the set of all zero divisors is denoted by $z(l)$. we associate a simple graph $gamma(l)$ to $l$ with vertex set $z(l)^*=z(l)setminus left{0right}$, the set of non-zero zero divisors of $l$ and distinct $x,yin z(l)^*$ are adjacent if and only...
In this paper we study combinatorial and algorithmic resp. complexity questions of upper domination, i.e., the maximum cardinality of a minimal dominating set in a graph. We give a full classification of the related maximisation and minimisation problems, as well as the related parameterised problems, on general graphs and on graphs of bounded degree, and we also study planar graphs.
We provide self-stabilizing algorithms to obtain and maintain a maximal matching, maximal independent set or minimal dominating set in a given system graph. They converge in linear rounds under a distributed or synchronous daemon. They can be implemented in an ad hoc network by piggy-backing on the beacon messages that nodes already use.
Let k be a positive integer and G = (V,E) be a graph of minimum degree at least k − 1. A function f : V → {−1, 1} is called a signed k-dominating function of G if ∑ u∈NG[v] f(u) ≥ k for all v ∈ V . The signed k-domination number of G is the minimum value of ∑ v∈V f(v) taken over all signed k-dominating functions of G. The signed total k-dominating function and signed total k-domination number o...
Let G be an intuitionistic fuzzy graph. Let u and v be two vertices of G. A subset D of V is called a fuzzy equitable dominating set if every v ∈ V − Dthere exist a vertex u ∈ D such that uv ∈ E(G) and |deg(u) − deg(v)| = 1 where deg(u) denotes the degree of vertex u and deg(v) denotes the degree of vertex v and μ2(vi, vj ) = μ1(vi) ∧ μ1(vj ), γ2(vi, vj ) = γ1(vi) ∨ γ1(vj ). The minimum cardina...
A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید