نتایج جستجو برای: laplace beltrami operator
تعداد نتایج: 103375 فیلتر نتایج به سال:
For a smooth, compact Riemannian manifold (M, g) of dimension N ≥ 3, we are interested in the critical equation ∆gu+ ( N − 2 4(N − 1) Sg +εh ) u = u N+2 N−2 in M , u > 0 in M , where ∆g is the Laplace–Beltrami operator, Sg is the Scalar curvature of (M, g), h ∈ C (M), and ε is a small parameter.
We study the L-spectrum of the Laplace-Beltrami operator on certain complete locally symmetric spaces M = Γ\X with finite volume and arithmetic fundamental group Γ whose universal covering X is a symmetric space of non-compact type. We also show, how the obtained results for locally symmetric spaces can be generalized to manifolds with cusps of rank one.
We consider the semi-flow defined by semi-linear parabolic equations in Lp-spaces and study the differentiable dependence on the initial data. Together with a spectral gap condition this implies existence of inertial manifolds in arbitrary space dimensions. The spectral gap condition is satisfied by the Laplace-Beltrami operator for a class of manifolds. The simplest examples are products of sp...
We address the problem of setting the kernel bandwidth used by Manifold Learning algorithms to construct the graph Laplacian. Exploiting the connection between manifold geometry, represented by the Riemannian metric, and the Laplace-Beltrami operator, we set by optimizing the Laplacian’s ability to preserve the geometry of the data. Experiments show that this principled approach is effective an...
This is the fourth article of our series. Here, we study weighted norm inequalities for the Riesz transform of the Laplace-Beltrami operator on Riemannian manifolds and of subelliptic sum of squares on Lie groups, under the doubling volume property and Gaussian upper bounds. Math. Z. 260 (2008), no. 3, 527--539
We study the dispersive properties of the wave equation associated with the shifted Laplace–Beltrami operator on Damek–Ricci spaces, and deduce Strichartz estimates for a large family of admissible pairs. As an application, we obtain global well–posedness results for the nonlinear wave equation.
Let (M, g) be a smooth, compact Riemannian n-manifold, and h be a Hölder continuous function on M . We prove the existence of multiple changing sign solutions for equations like ∆gu + hu = |u| ∗−2 u, where ∆g is the Laplace–Beltrami operator and the exponent 2∗ = 2n/ (n− 2) is critical from the Sobolev viewpoint.
We find the deformed Heisenberg algebra and the Laplace-Beltrami operator on the extended h-deformed quantum plane and solve the Schrödinger equations explicitly for simple systems on the quantum plane. In the commutative limit the behavior of a quantum particle on the quantum plane becomes that of the quantum particle on the Poincaré half-plane, a surface of constant negative Gaussian curvature.
Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3. We are concerned with the following elliptic problem ∆gu+ hu = |u| 4 n−2−εu, in M, where ∆g = −divg(∇) is the Laplace-Beltrami operator on M , h is a C1 function on M , ε is a small real parameter such that ε goes to 0.
We prove pointwise bounds for L eigenfunctions of the Laplace-Beltrami operator on locally symmetric spaces with Q-rank one if the corresponding eigenvalues lie below the continuous part of the L spectrum. Furthermore, we use these bounds in order to obtain some results concerning the L spectrum.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید