نتایج جستجو برای: lambda modified wiener index
تعداد نتایج: 666561 فیلتر نتایج به سال:
Let G be a molecular graph. The Wiener index of G is defined as the summation of all distances between vertices of G. In this paper, an exact formula for the Wiener index of a new type of nanostar dendrimer is given.
let g be a simple connected graph. the generalized polarity wiener index ofg is defined as the number of unordered pairs of vertices of g whosedistance is k. some formulas are obtained for computing the generalizedpolarity wiener index of the cartesian product and the tensor product ofgraphs in this article.
The sum of distances between all pairs of vertices W (G) in a connected graph G as a graph invariant was first introduced by Wiener [9] in 1947. He observed a correlation between boiling points of paraffins and this invariant, which has later become known as Wiener index of a graph. Today, the Wiener index is one of the most widely used descriptors in chemical graph theory. Due to its strong co...
the edge versions of reverse wiener indices were introduced by mahmiani et al. veryrecently. in this paper, we find their relation with ordinary (vertex) wiener index in somegraphs. also, we compute them for trees and tuc4c8(s) naotubes.
The Wiener index is one of the oldest graph parameter which is used to study molecular-graph-based structure. This parameter was first proposed by Harold Wiener in 1947 to determining the boiling point of paraffin. The Wiener index of a molecular graph measures the compactness of the underlying molecule. This parameter is wide studied area for molecular chemistry. It is used to study the physio...
let g be a simple graph. the hosoya polynomial of g is ( , ) ,( , ) = { , } ( ) xd u v h g x u v v gwhere d(u,v) denotes the distance between vertices u and v . the dendrimer nanostar is apart of a new group of macromolecules. in this paper we compute the hosoya polynomial foran infinite family of dendrimer nanostar. as a consequence we obtain the wiener index andthe hyper-wiener index of th...
the vertex-edge wiener index of a simple connected graph g is defined as the sum of distances between vertices and edges of g. two possible distances d_1(u,e|g) and d_2(u,e|g) between a vertex u and an edge e of g were considered in the literature and according to them, the corresponding vertex-edge wiener indices w_{ve_1}(g) and w_{ve_2}(g) were introduced. in this paper, we present exact form...
This note introduces a new general conjecture correlating the dimensionality dT of an infinite lattice with N nodes to the asymptotic value of its Wiener Index W(N). In the limit of large N the general asymptotic behavior W(N)≈Ns is proposed, where the exponent s and dT are related by the conjectured formula s=2+1/dT allowing a new definition of dimensionality dW=(s-2)-1. Being related to the t...
let $g$ be an $(n,m)$-graph. we say that $g$ has property $(ast)$if for every pair of its adjacent vertices $x$ and $y$, thereexists a vertex $z$, such that $z$ is not adjacentto either $x$ or $y$. if the graph $g$ has property $(ast)$, thenits complement $overline g$ is connected, has diameter 2, and itswiener index is equal to $binom{n}{2}+m$, i.e., the wiener indexis insensitive of any other...
The Wiener number of a graph G is defined as 1 2 ∑ u,v∈V (G) d(u, v), d the distance function on G. The Wiener number has important applications in chemistry. We determine a formula for the Wiener number of an important graph family, namely, the Mycielskians μ(G) of graphs G. Using this, we show that for k ≥ 1, W (μ(S n)) ≤ W (μ(T k n )) ≤ W (μ(P k n )), where Sn, Tn and Pn denote a star, a gen...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید