نتایج جستجو برای: lagrange polynomials
تعداد نتایج: 46226 فیلتر نتایج به سال:
This paper proposes an algebraic decoding algorithm for the (41, 21, 9) quadratic residue code via Lagrange interpolation formula to determine error check and error locator polynomials. Programs written in C++ language have been executed to check every possible error pattern of this quadratic residue code.
Properties of the Lebesgue function for Lagrange interpolation on equidistant nodes are investigated. It is proved that the Lebesgue function can be formulated both in terms of a hypergeometric function 2F1 and Jacobi polynomials. Moreover an integral expression of the Lebesgue function is also obtained. Finally, the asymptotic behavior of the Lebesgue constant is studied.
In 1977 Chung and Yao introduced a geometric characterization in multivariate interpolation in order to identify distributions of points such that the Lagrange functions are products of real polynomials of first degree. We discuss and describe completely all these configurations up to degree 4 in the bivariate case. The number of lines containing more nodes than the degree is used for classifyi...
A formula expressing free cumulants in terms of the Jacobi parameters of the corresponding orthogonal polynomials is derived. It combines Flajolet's theory of continued fractions and Lagrange inversion. For the converse we discuss Gessel-Viennot theory to express Hankel determinants in terms of various cumulants.
Due to the Lagrange interpolation polynomials do not converge uniformly to arbitrary continuous functions, in this paper, a new interpolation polynomial is constructed by using the weighted average method to the interpolated functions. It is proved that the interpolation polynomial not only converges uniformly to arbitrary continuous functions, but also has the best approximation order and the ...
This article considers the backward error of the solution of polynomial eigenvalue problems expressed as Lagrange interpolants. One of the most common strategies to solve polynomial eigenvalue problems is to linearize, which is to say that the polynomial eigenvalue problem is transformed into an equivalent larger linear eigenvalue problem, and solved using any appropriate eigensolver. Much of t...
We derive in a simple way certain minimal cubature formulae, obtained by Morrow and Patterson [2], and Xu [4], using a different technique. We also obtain in explicit form new near minimal cubature formulae. Then, as a corollary, we get a compact expression for the bivariate Lagrange interpolation polynomials, based on the nodes of the cubature.
This study reports the validity of the modified Shanks’ conjecture on the planar least squares inverse (PLSI) method of stabilizing two-dimensional (2-D) recursive digital filters. A theoretical procedure proposed based on the Lagrange multiplier method of mathematical optimization. The results indicate that the modified Shanks’ conjecture reported by Jury was valid for special classes of 2-D p...
We present a new method to construct interpolating reenable functions in higher dimensions. The approach is based on the solutions to speciic Lagrange interpolation problems by polynomials and applies to a large class of scaling matrices. The resulting scaling functions automatically satisfy certain Strang{Fix conditions. Several examples are discussed.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید