نتایج جستجو برای: joint spectral radius

تعداد نتایج: 394137  

2003
Vincent D. Blondel Yurii Nesterov Jacques Theys

The joint spectral radius of a set of matrices is a measure of the maximal asymptotic growth rate that can be obtained by forming long products of matrices taken from the set. This quantity appears in a number of application contexts but is notoriously difficult to compute and to approximate. We introduce in this paper an approximation ρ̂ that is based on ellipsoid norms, that can be computed by...

2008
Victor Kozyakin Bernd Aulbach

In various problems of control theory, non-autonomous and multivalued dynamical systems, wavelet theory and other fields of mathematics information about the rate of growth of matrix products with factors taken from some matrix set plays a key role. One of the most prominent quantities characterizing the exponential rate of growth of matrix products is the so-called joint or generalized spectra...

Journal: :Journal of Difference Equations and Applications 2011

Journal: :Universal Journal of Mathematics and Applications 2019

Journal: :SIAM J. Matrix Analysis Applications 2010
Vladimir Protasov Raphaël M. Jungers Vincent D. Blondel

We propose a new method to compute the joint spectral radius and the joint spectral subradius of a set of matrices. We first restrict our attention to matrices that leave a cone invariant. The accuracy of our algorithm, depending on geometric properties of the invariant cone, is estimated. We then extend our method to arbitrary sets of matrices by a lifting procedure, and we demonstrate the eff...

2007
Rong-Qing Jia S. D. Riemenschneider

We consider the smoothness of solutions of a system of reenement equations written in the form as = X 2ZZ a()(2 ?) where the vector of functions = (1 ; : : : ; r) T is in (L p (IR)) r and a is a nitely supported sequence of r r matrices called the reenement mask. We use the generalized Lipschitz space Lip (; L p (IR)), > 0, to measure smoothness of a given function. Our method is to relate the ...

1999
RONG - QING JIA SHERMAN D. RIEMENSCHNEIDER DING - XUAN ZHOU

We consider the smoothness of solutions of a system of refinement equations written in the form φ = ∑ α∈Z a(α)φ(2 · − α), where the vector of functions φ = (φ1, . . . , φr) is in (Lp(R)) and a is a finitely supported sequence of r× r matrices called the refinement mask. We use the generalized Lipschitz space Lip∗(ν, Lp(R)), ν > 0, to measure smoothness of a given function. Our method is to rela...

1996
Rong-Qing Jia S. D. Riemenschneider

We consider solutions of a system of reenement equations written in the form as = X 2Z a()(2 ?) where the vector of functions = (1 ; : : : ; r) T is in (L p (R)) r and a is a nitely supported sequence of rr matrices called the reenement mask. Associated with the mask a is a linear operator Q a deened on (L p (R)) r by Q a f := P 2Z a()f(2 ?). This paper is concerned with the convergence of the ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید