Very recently, Bialostocki et al. proposed the following conjecture. Let r, s be two nonnegative integers and let G = (V (G), E(G)) be a graph with |V (G)| ≥ 3r + 4s and minimum degree δ(G) ≥ 2r + 3s. Then G contains a collection of r cycles and s chorded cycles, all vertex-disjoint. We prove that this conjecture is true.