نتایج جستجو برای: isomerases
تعداد نتایج: 1906 فیلتر نتایج به سال:
Thiol-disulfide oxidoreductase systems of bacterial cytoplasm and eukaryotic cytosol favor reducing conditions and protein thiol groups, while bacterial periplasm and eukaryotic endoplasmatic reticulum provide oxidizing conditions and a machinery for disulfide bond formation in the secretory pathway. Oxidoreductases of the thioredoxin fold superfamily catalyze steps in oxidative protein folding...
Protein disulfide isomerase (PDI) is an oxidoreductase essential for folding proteins in the endoplasmic reticulum. The domain structure of PDI is a-b-b'-x-a', wherein the thioredoxin-like a and a' domains mediate disulfide bond shuffling and b and b' domains are substrate binding. The b' and a' domains are connected via the x-linker, a 19-amino-acid flexible peptide. Here we identify a class o...
Glucose isomerases produced by Thermoanaerobacter strain B6A and Clostridium thermosulfurogenes strain 4B were purified 10-11-fold to homogeneity and their physicochemical and catalytic properties were determined. Both purified enzymes displayed very similar properties (native Mr 200,000, tetrameric subunit composition, and apparent pH optima 7.0-7.5). The enzymes were stable at pH 5.5-12.0, an...
Formation and rearrangement of disulfide bonds during the correct folding of nascent proteins is modulated by a family of enzymes known as thiol isomerases, which include protein disulfide isomerase (PDI), endoplasmic reticulum protein 5 (ERP5), and ERP57. Recent evidence supports an alternative role for this family of proteins on the surface of cells, where they are involved in receptor remode...
Proteins with great sequence similarity usually have similar structure, function and other physicochemical properties. But in many cases, one or more of the physicochemical or functional characteristics differ, sometimes very considerably, among these homologous proteins. To better understand how critical amino acids determine quantitative properties of function in proteins, the responsible res...
Ribose-5-phosphate isomerase (Rpi), an important enzyme in the pentose phosphate pathway, catalyzes the interconversion of ribulose 5-phosphate and ribose 5-phosphate. Two unrelated isomerases have been identified, RpiA and RpiB, with different structures and active site residues. The reaction catalyzed by both enzymes is thought to proceed via a high energy enediolate intermediate, by analogy ...
Formation and rearrangement of disulfide bonds during the correct folding of nascent proteins is modulated by a family of enzymes known as thiol isomerases, which include protein disulfide isomerase (PDI), endoplasmic reticulum protein 5 (ERP5), and ERP57. Recent evidence supports an alternative role for this family of proteins on the surface of cells, where they are involved in receptor remode...
To form the building blocks of isoprenoids, isopentenyl diphosphate (IPP) isomerase activity, which converts IPP to dimethylallyl diphosphate (DMAPP), appears to be necessary in cytosol, plastids, and mitochondria. Arabidopsis thaliana contains only two IPP isomerases (Isopentenyl Diphosphate Isomerase1 [IDI1] and IDI2). Both encode proteins with N-terminal extensions similar to transit peptide...
Recently, cupin type phosphoglucose isomerases have been described as a novel protein family representing a separate lineage in the evolution of phosphoglucose isomerases. The importance of eight active site residues completely conserved within the cPGI family has been assessed by site-directed mutagenesis using the cPGI from Archaeoglobus fulgidus (AfcPGI) as a model. The mutants T63A, G79A, G...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید