نتایج جستجو برای: inference model

تعداد نتایج: 2167259  

عمادی, علیرضا, فضل اولی, رامین, کیا, عیسی,

Sediment load estimation is one of the most important issues in rivers & dam reservoirs management and generally in water projects. Various empirical equations show that proper analytical or empirical method is not suggested for correct estimation of suspended sediment, yet. In the present study, to assessment of closer estimation to actual data of transported sediment in Ghoran Talar station l...

In this work, an artificial neural network (ANN) model along with a combination of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) i.e. (PSO-ANFIS) are proposed for modeling and prediction of the propylene/propane adsorption under various conditions. Using these computational intelligence (CI) approaches, the input parameters such as adsorbent shape (S<su...

Baojiang Chen, Grace Y. Yi, Lihua Wang, Longyang Wu, Zhijian Chen,

A common study to investigate gene-environment interaction is designed to be longitudinal and population-based. Data arising from longitudinal association studies often contain missing responses. Naive analysis without taking missingness into account may produce invalid inference, especially when the missing data mechanism depends on the response process. To address this issue in the ana...

Journal: :international journal of advanced biological and biomedical research 2014
abazar solgi feridon radmanesh heidar zarei vahid nourani

awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. therefore, the present study two hybrid models, wavelet- adaptive neural fuzzy interference system (wanfis) and wavelet- artificial neural network (wann) are used for flow prediction of gamasyab river (nahavand, hamedan, iran...

The rate of penetration (ROP) is one of the vital parameters which directly affects the drilling time and costs. There are various parameters that influence the drilling rate; they include weight on bit, rotational speed, mud weight, bit type, formation type, and bit hydraulic. Several approaches, including mathematical models and artificial intelligence have been proposed to predict the rate o...

Journal: :Communications for Statistical Applications and Methods 2009

Journal: :Journal of Time Series Analysis 2014

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید