Utilizing the linking algebra of a Hilbert $C^*$-module $\big(\mathscr{V}, {\|\!\cdot\!\|}_{_{\mathscr{V}}}\big)$, we introduce $\Omega(x)$ as definition numerical radius for an element $x\in\mathscr{V}$ and then show that $\Omega(\cdot)$ is norm on $\mathscr{V}$ such $\frac{1}{2}{\|x\|}_{_{\mathscr{V}}} \leq \Omega(x) {\|x\|}_{_{\mathscr{V}}}$. In addition, obtain equivalent condition $\Omega(...