نتایج جستجو برای: higher moments

تعداد نتایج: 1016012  

2004
J. J. Murillo-Fuentes F. J. González-Serrano

An on-line learning algorithm, which minimizes a criterion based on geometrical properties, is derived for blind separation of mixed signals. This new contrast function focuses on the concept of center of masses and higher order moments (HOM) applied to the outputs. The source signals and the mixing matrix are unknown except for the number of sources. A set of estimating equations is obtained. ...

2007
Haris M. Stellakis Elias S. Manolakos

In signal processing applications that require new estimates of the fourth and lower order moments every time a new data sample is received, it is necessary to design algorithms that adaptively update these terms. In addition, if real-time performance is necessary we should transform these algorithms so that their parallel processing and pipelining potential is exploited by a suitable multiproc...

Journal: :Physical review letters 2010
M M Aggarwal Z Ahammed A V Alakhverdyants I Alekseev J Alford B D Anderson D Arkhipkin G S Averichev J Balewski L S Barnby S Baumgart D R Beavis R Bellwied M J Betancourt R R Betts A Bhasin A K Bhati H Bichsel J Bielcik J Bielcikova B Biritz L C Bland B E Bonner J Bouchet E Braidot A V Brandin A Bridgeman E Bruna S Bueltmann I Bunzarov T P Burton X Z Cai H Caines M Calderón de la Barca Sánchez O Catu D Cebra R Cendejas M C Cervantes Z Chajecki P Chaloupka S Chattopadhyay H F Chen J H Chen J Y Chen J Cheng M Cherney A Chikanian K E Choi W Christie P Chung R F Clarke M J M Codrington R Corliss J G Cramer H J Crawford D Das S Dash A Davila Leyva L C De Silva R R Debbe T G Dedovich A A Derevschikov R Derradi de Souza L Didenko P Djawotho S M Dogra X Dong J L Drachenberg J E Draper J C Dunlop M R Dutta Mazumdar L G Efimov E Elhalhuli M Elnimr J Engelage G Eppley B Erazmus M Estienne L Eun O Evdokimov P Fachini R Fatemi J Fedorisin R G Fersch P Filip E Finch V Fine Y Fisyak C A Gagliardi D R Gangadharan M S Ganti E J Garcia-Solis A Geromitsos F Geurts V Ghazikhanian P Ghosh Y N Gorbunov A Gordon O Grebenyuk D Grosnick S M Guertin A Gupta N Gupta W Guryn B Haag A Hamed L-X Han J W Harris J P Hays-Wehle M Heinz S Heppelmann A Hirsch E Hjort A M Hoffman G W Hoffmann D J Hofman B Huang H Z Huang T J Humanic L Huo G Igo P Jacobs W W Jacobs C Jena F Jin C L Jones P G Jones J Joseph E G Judd S Kabana K Kajimoto K Kang J Kapitan K Kauder D Keane A Kechechyan D Kettler D P Kikola J Kiryluk A Kisiel S R Klein A G Knospe A Kocoloski D D Koetke T Kollegger J Konzer I Koralt L Koroleva W Korsch L Kotchenda V Kouchpil P Kravtsov K Krueger M Krus L Kumar P Kurnadi M A C Lamont J M Landgraf S LaPointe J Lauret A Lebedev R Lednicky C-H Lee J H Lee W Leight M J LeVine C Li L Li N Li W Li X Li Y Li Z M Li G Lin S J Lindenbaum M A Lisa F Liu H Liu J Liu T Ljubicic W J Llope R S Longacre W A Love Y Lu E V Lukashov X Luo G L Ma Y G Ma D P Mahapatra R Majka O I Mall L K Mangotra R Manweiler S Margetis C Markert H Masui H S Matis Yu A Matulenko D McDonald T S McShane A Meschanin R Milner N G Minaev S Mioduszewski A Mischke M K Mitrovski B Mohanty M M Mondal B Morozov D A Morozov M G Munhoz B K Nandi C Nattrass T K Nayak J M Nelson P K Netrakanti M J Ng L V Nogach S B Nurushev G Odyniec A Ogawa V Okorokov E W Oldag D Olson M Pachr B S Page S K Pal Y Pandit Y Panebratsev T Pawlak T Peitzmann V Perevoztchikov C Perkins W Peryt S C Phatak P Pile M Planinic M A Ploskon J Pluta D Plyku N Poljak A M Poskanzer B V K S Potukuchi C B Powell D Prindle C Pruneau N K Pruthi P R Pujahari J Putschke H Qiu R Raniwala S Raniwala R L Ray R Redwine R Reed H G Ritter J B Roberts O V Rogachevskiy J L Romero A Rose C Roy L Ruan R Sahoo S Sakai I Sakrejda T Sakuma S Salur J Sandweiss E Sangaline J Schambach R P Scharenberg N Schmitz T R Schuster J Seele J Seger I Selyuzhenkov P Seyboth E Shahaliev M Shao M Sharma S S Shi E P Sichtermann F Simon R N Singaraju M J Skoby N Smirnov P Sorensen J Sowinski H M Spinka B Srivastava T D S Stanislaus D Staszak J R Stevens R Stock M Strikhanov B Stringfellow A A P Suaide M C Suarez N L Subba M Sumbera X M Sun Y Sun Z Sun B Surrow D N Svirida T J M Symons A Szanto de Toledo J Takahashi A H Tang Z Tang L H Tarini T Tarnowsky D Thein J H Thomas J Tian A R Timmins S Timoshenko D Tlusty M Tokarev V N Tram S Trentalange R E Tribble O D Tsai J Ulery T Ullrich D G Underwood G Van Buren M van Leeuwen G van Nieuwenhuizen J A Vanfossen R Varma G M S Vasconcelos A N Vasiliev F Videbaek Y P Viyogi S Vokal S A Voloshin M Wada M Walker F Wang G Wang H Wang J S Wang Q Wang X L Wang Y Wang G Webb J C Webb G D Westfall C Whitten H Wieman S W Wissink R Witt Y F Wu W Xie H Xu N Xu Q H Xu W Xu Y Xu Z Xu L Xue Y Yang P Yepes K Yip I-K Yoo Q Yue M Zawisza H Zbroszczyk W Zhan J B Zhang S Zhang W M Zhang X P Zhang Y Zhang Z P Zhang J Zhao C Zhong J Zhou W Zhou X Zhu Y H Zhu R Zoulkarneev Y Zoulkarneeva

We report the first measurements of the kurtosis (κ), skewness (S), and variance (σ2) of net-proton multiplicity (Np-Np) distributions at midrapidity for Au+Au collisions at square root of s(NN)=19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (μB) between 200 and 20 MeV. Our measurements of the products κσ2 and Sσ, which can be related to theoretical calculations sensitive t...

2016
Xuanxuan Xiao XUANXUAN XIAO

We consider the higher integral moments for automorphic L-functions in short intervals and give a proof for the conjecture of Conrey et al. under Generalized Riemann Hypothesis for automorphic L-function.

Journal: :CoRR 2011
Abdul Kadir Lukito Edi Nugroho Adhi Susanto Paulus Insap Santosa

This paper proposed a method that combines Polar Fourier Transform, color moments, and vein features to retrieve leaf images based on a leaf image. The method is very useful to help people in recognizing foliage plants. Foliage plants are plants that have various colors and unique patterns in the leaf. Therefore, the colors and its patterns are information that should be counted on in the proce...

Journal: :Digital Signal Processing 2010
Seyed Mehdi Lajevardi Zahir M. Hussain

Article history: Available online 30 March 2010

2012
SVANTE JANSON STEN KAIJSER

We define the k:th moment of a Banach space valued random variable as the expectation of its k:th tensor power; thus the moment (if it exists) is an element of a tensor power of the original Banach space. We study both the projective and injective tensor products, and their relation. Moreover, in order to be general and flexible, we study three different types of expectations: Bochner integrals...

1997
José Carlos Alves André T. Puga Luís Corte-Real José Silva Matos

Higher-order statistics extend the analysis methods of non-linear systems and non-gaussian signals based on the autocorrelation and power spectrum. The main drawback of their use in real time applications is the high complexity of their estimation due to the large number of arithmetic operations. This paper presents an experimental vector architecture for the estimation of the higher-order mome...

2000
Jeffrey O. Coleman

In independent component analysis (ICA), random-variable independence is often equated with factorization of the joint moments, expectations of products of powers. This paper shows that many nonpower functions are equally useful: if factors into for every and from an independence class, then random variables and are independent. Examples of and sufficient conditions for independence classes are...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید