نتایج جستجو برای: handwritten word recognition

تعداد نتایج: 343246  

2005
Jonathan J Hull

VariOllS aspects of using language-level syntactic and semantic cOUM straints to improve the performance of word recognition algorithms are dis~ cussed, Following a brief presentation of a hypothesis generation model for handwritten word recognition, various types of languageMlevel constraints are reviewed, Methods that exploit these characteristics are discussed including intraMdocument word c...

2008
Dzulkifli Muhammad Amjad Rehman

The segmentation of off-line cursive handwritten word is an important step in cursive handwriting recognition. In this paper a new, simple yet effective approach is proposed. Proposed technique is based on the analysis of the ligatures of the characters in the cursive word. The only preprocessing is to skeleton the word to allow variations in pen thickness and tilt in writing. There is no const...

2011
Reza Ebrahimpour Mona Amini Afra Vahidi Shams

This paper investigates Farsi handwritten word recognition using common features. Also we applied biologically inspired features (BIFs), derived from a feed forward model of object recognition pathway in visual cortex for Farsi handwritten word recognition problem. Experimental results show that the model achieves high recognition percentage even for large variations and applicability of these ...

2006
Marcus Liwicki Horst Bunke

In this paper we present an on-line recognition system for handwritten texts acquired from a whiteboard. This input modality has received relatively little attention in the handwriting recognition community in the past. The system proposed in this paper uses state-of-the-art normalization and feature extraction strategies to transform a handwritten text line into a sequence of feature vectors. ...

2014
David C. Wyld Ahmed Sahlol Cheng Suen

Recognition of handwritten Arabic text awaits accurate recognition solutions. There are many difficulties facing a good handwritten Arabic recognition system such as unlimited variation in human handwriting, similarities of distinct character shapes, and their position in the word. The typical Optical Character Recognition (OCR) systems are based mainly on three stages, preprocessing, features ...

Journal: :CoRR 2016
Supratim Das Pawan Kumar Singh Showmik Bhowmik Ram Sarkar Mita Nasipuri

A lot of search approaches have been explored for the selection of features in pattern classification domain in order to discover significant subset of the features which produces better accuracy. In this paper, we introduced a Harmony Search (HS) algorithm based feature selection method for feature dimensionality reduction in handwritten Bangla word recognition problem. This algorithm has been...

1998
B. VERMA M. BLUMENSTEIN

This paper reviews the current state of the art in handwriting recognition research. The paper deals with issues such as hand-printed character and cursive handwritten word recognition. It describes recent achievements, difficulties, successes and challenges in all aspects of handwriting recognition. It also presents a new approach which dramatically improves current handwriting recognition sys...

2008
Sara Izadi Mehdi Haji Ching Y. Suen

The cursive nature of Persian alphabet, and the complex and convoluted rules regarding this script cause major challenges to segmentation as well as recognition of Persian words. We propose a new segmentation algorithm for the main stroke of online Persian handwritten words. Using this segmentation, we present a perturbation method which is used to generate artificial samples from handwritten w...

Despite the growing growth of technology, handwritten signature has been selected as the first option between biometrics by users. In this paper, a new methodology for offline handwritten signature verification and recognition based on the Shearlet transform and transfer learning is proposed. Since, a large percentage of handwritten signatures are composed of curves and the performance of a sig...

2007
Melanie Lemaitre

In this thesis, we present a general bidimensional markovian approach in theframework of handwritten document analysis and recognition. This approachcalled AMBRES (Bidimensional Markovian Approach for image Recognition andSegmentation) is based on Markov random elds, 2D dynamic programming anda bidimensional analysis of images.AMBRES has been successfully applied to a wi...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->