نتایج جستجو برای: gaussian quadrature

تعداد نتایج: 88178  

Journal: :J. Computational Applied Mathematics 2013
Adhemar Bultheel Pablo González-Vera Erik Hendriksen Olav Njåstad

We consider a positive measure on [0,∞) and a sequence of nested spaces L0 ⊂ L1 ⊂ L2 · · · of rational functions with prescribed poles in [−∞, 0]. Let {φk}k=0, with φ0 ∈ L0 and φk ∈ Lk \ Lk−1, k = 1, 2, . . . be the associated sequence of orthogonal rational functions. The zeros of φn can be used as the nodes of a rational Gauss quadrature formula that is exact for all functions in Ln · Ln−1, a...

Journal: :Math. Comput. 1996
Dimitar K. Dimitrov

The results in this paper are motivated by two analogies. First, m-harmonic functions in Rn are extensions of the univariate algebraic polynomials of odd degree 2m−1. Second, Gauss’ and Pizzetti’s mean value formulae are natural multivariate analogues of the rectangular and Taylor’s quadrature formulae, respectively. This point of view suggests that some theorems concerning quadrature rules cou...

2005
RAKHIM AITBAYEV R. Aitbayev

A quadrature finite element Galerkin scheme for a Dirichlet boundary value problem for the biharmonic equation is analyzed for a solution existence, uniqueness, and convergence. Conforming finite element space of Bogner-Fox-Schmit rectangles and an integration rule based on the two-point Gaussian quadrature are used to formulate the discrete problem. An H2-norm error estimate is obtained for th...

2012
Alex Bloemendal

We discuss the relationships among Jacobi matrices, orthogonal polynomials, spectral measure, moments, minors, Gaussian quadrature, resolvents and continued fractions in the simplest setting, namely the finite-dimensional one. The formal structure is essentially the same as that in the infinite-dimensional setting, where it leads into the rich analytic world of orthogonal polynomials on the rea...

2012
Marco Vianello

We construct a quadrature formula with n+ 1 angles and positive weights, exact in the (2n+1)-dimensional space of trigonometric polynomials of degree ≤ n on intervals with length smaller than 2π. We apply the formula to the construction of product Gaussian quadrature rules on circular sectors, zones, segments and lenses. 2000 AMS subject classification: 65D32.

2013
Gaspare Da Fies Marco Vianello

Resorting to recent results on subperiodic trigonometric quadrature, we provide three product Gaussian quadrature formulas exact on algebraic polynomials of degree n on circular lunes. The first works on any lune, and has n+O(n) cardinality. The other two have restrictions on the lune angular intervals, but their cardinality is n/2 +O(n). 2000 AMS subject classification: 65D32.

2005
Rakhim Aitbayev

Efficient numerical algorithms are developed and analyzed that implementmultilevel preconditioners for the solution of the quadrature finite element Galerkin approximation of the biharmonic Dirichlet problem. The quadrature scheme is formulated using the Bogner-Fox-Schmit rectangular element and the product two-point Gaussian quadrature. The proposed additive and multiplicative preconditioners ...

2013
MOHAMMAD W. ALOMARI M. W. ALOMARI

In order to approximate the Riemann–Stieltjes integral ∫ b a f (t) dg (t) by 2–point Gaussian quadrature rule, we introduce the quadrature rule ∫ 1 −1 f (t) dg (t) ≈ Af ( − √ 3 3 ) + Bf (√ 3 3 ) , for suitable choice of A and B. Error estimates for this approximation under various assumptions for the functions involved are provided as well.

1996
Knut Petras

Several deenitions of universality of an n-point quadrature formula Q n are discussed. Universality means that Q n is able to compete with the respective optimal formula in many classes of functions. It is proved in a certain sense that the Gaus-sian quadrature formula satisses such a universality criterion. The underlying classes of functions are In each of these classes, we loose at most the ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید