نتایج جستجو برای: fuzzy simpsons rule
تعداد نتایج: 238591 فیلتر نتایج به سال:
Fuzzy Classifiers are an powerful class of fuzzy systems. Evolving fuzzy classifiers from numerical data has assumed lot of remarks in the recent past. This paper proposes a method of evolving fuzzy classifiers using a three step technique. In the first step, a modified Fuzzy C–Means Clustering technique is applied to generate membership functions. In the next step, rule base are generated usin...
Genetic fuzzy rule selection is a two-phase classification rule mining method. First a large number of candidate fuzzy rules are generated by an association rule mining technique. Then only a small number of generated rules are selected by a genetic algorithm. We have already proposed an idea of parallel distributed implementation of genetic fuzzy rule selection. In this paper, we examine its c...
Fuzzy rule interpolation forms an important approach for performing inference with systems comprising sparse rule bases. Even when a given observation has no overlap with the antecedent values of any existing rules, fuzzy rule interpolation may still derive a useful conclusion. Unfortunately, very little of the existing work on fuzzy rule interpolation can conjunctively handle more than one for...
If the given fact for an antecedent in a fuzzy production rule (FPR) does not match exactly with the antecedent of the rule, the consequent can still be drawn by technique such as fuzzy reasoning. Many existing fuzzy reasoning methods are based on Zadeh’s Compositional rule of Inference (CRI) which requires setting up a fuzzy relation between the antecedent and the consequent part. There are so...
In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of similar fuzzy sets that represent compatible concepts. This results in an unnecessarily complex and less transparent linguistic description of the system. By using a measure of similarity, a rule base simplification method is proposed that reduces the number of fuzzy sets in the model. Similar fuzz...
In this paper, a hybrid Fuzzy Neural Network (FNN) system for function approximation is presented. The proposed FNN can handle numeric and fuzzy inputs simultaneously. The numeric inputs are fuzzified by input nodes upon presentation to the network while the Fuzzy rule based knowledge is translated directly into network architecture. The connections between input to hidden nodes represent rule ...
In this paper, we examine the classification performance of fuzzy if-then rules selected by a GA-based multi-objective rule selection method. This rule selection method can be applied to high-dimensional pattern classification problems with many continuous attributes by restricting the number of antecedent conditions of each candidate fuzzy if-then rule. As candidate rules, we only use fuzzy if...
In this paper, a fuzzy Petri net approach to modeling fuzzy rule-based reasoning is proposed to bring together the possibilistic entailment and the fuzzy reasoning to handle uncertain and imprecise information. The three key components in our fuzzy rule-based reasoning-fuzzy propositions, truth-qualified fuzzy rules, and truth-qualified fuzzy facts-can be formulated as fuzzy places, uncertain t...
In this special issue on "Fuzzy Expert Systems," six papers cover a wide range of concerns--from theory to applications including: (1) a rule base reorganization, (2) a linear interpolation, (3) a neuro-fuzzy approach to pairwise comparison, (4) properties of reduction, in transitive matrices, (5) a consistency checking procedure, and (6) a context dependency model. We present a brief review of...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید