نتایج جستجو برای: fuzzy k nearest neighbor
تعداد نتایج: 493076 فیلتر نتایج به سال:
The first step in graph-based semi-supervised classification is to construct a graph from input data. While the k-nearest neighbor graphs have been the de facto standard method of graph construction, this paper advocates using the less well-known mutual k-nearest neighbor graphs for high-dimensional natural language data. To compare the performance of these two graph construction methods, we ru...
Classification of objects is an important area in a variety of fields and applications. Many different methods are available to make a decision in those cases. The knearest neighbor rule (k-NN) is a well-known nonparametric decision procedure. Classification rules based on the k-NN have already been proposed and applied in diverse substantive areas. The editing k-NN proposed by Wilson would be ...
A visible k nearest neighbor (Vk NN) query retrieves k objects that are visible and nearest to the query object, where “visible”means that there is no obstacle between an object and the query object. Existing studies on the Vk NN query have focused on static data objects. In this paper we investigate how to process the query on moving objects continuously. We queries. We exploit spatial proximi...
In this paper, we propose novel methods to find the best relevant feature subset using fuzzy rough set-based attribute subset selection with biologically inspired algorithm search such as ant colony and particle swarm optimization and the principles of an evolutionary process. We then propose a hybrid fuzzy rough with K-nearest neighbor (KNN)-based classifier (FRNN) to classify the patterns in ...
Classification of imbalanced datasets is one of the widely explored challenges of the decade. The imbalance occurs in many real world datasets due to uneven distribution of data into classes, i.e. one class has more instances while others have a few that results in the biased performances of traditional classifiers towards the majority class with large number of instances and ignorance of other...
k-Nearest Neighbor (KNN) is one of the most popular algorithms for pattern recognition. Many researchers have found that the KNN classifier may decrease the precision of classification because of the uneven density of t raining samples .In view of the defect, an improved k-nearest neighbor algorithm is presented using shared nearest neighbor similarity which can compute similarity between test ...
Data Mining has great scope in the field of medicine. In this article we introduced one new fuzzy approach for prediction of hepatitis disease. Many researchers have proposed the use of K-nearest neighbor (KNN) for diabetes disease prediction. Some have proposed a different approach by using K-means clustering for reprocessing and then using KNN for classification. In our approach Naive Bayes c...
This paper analyzes k nearest neighbor classification with training data anonymized using anatomy. Anatomy preserves all data values, but introduces uncertainty in the mapping between identifying and sensitive values. We first study the theoretical effect of the anatomized training data on the k nearest neighbor error rate bounds, nearest neighbor convergence rate, and Bayesian error. We then v...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید