نتایج جستجو برای: frobenius rings
تعداد نتایج: 52819 فیلتر نتایج به سال:
Let Fq[T] be the polynomial ring over a finite field Fq. We study endomorphism rings of Drinfeld Fq[T]-modules arbitrary rank fields. compare to their subrings generated by Frobenius and deduce from this refinement reciprocity law for division fields modules proved in our earlier paper. then use these results give an efficient algorithm computing discuss some interesting examples produced algor...
Landau-Ginzburg mirror symmetry studies isomorphisms between Aand B-models, which are graded Frobenius algebras that are constructed using a weighted homogeneous polynomial W and a related symmetry group G. Given two polynomials W1, W2 with the same weights and same group G, the corresponding A-models built with (W1,G) and (W2,G) are isomorphic. Though the same result cannot hold in full genera...
An significant milestone study in coding theory recognized to be the paper written by Hammons at al. [1]. Fields are useful area for constructing codes but after the study [1] finite ring have received a great deal of attention. Most of the studies are concentrated on the case with codes over finite chain rings. However, optimal codes over nonchain rings exist (e.g see [2].) In [3], et al. stud...
Recently the first writer [l] gave a characterization of quasiFrobenius rings, introduced formerly by the second writer [3], in terms of a condition proposed by K. Shoda, which reads: A ring A satisfying minimum condition and possessing a unit element is a quasi-Frobenius ring if and only if A satisfies the following condition:1 (a) every (A -left-) homomorphism of a left-ideal of A into A may ...
The main purpose is to characterise continuous maps that are n-branched coverings in terms of induced maps on the rings of functions. The special properties of Frobenius nhomomorphisms between two function spaces that correspond to n-branched coverings are determined completely. Several equivalent definitions of a Frobenius n-homomorphism are compared and some of their properties are proved. An...
In Secion 1 we describe what is known of the extent to which a separable extension of unital associative rings is a Frobenius extension. A problem of this kind is suggested by asking if three algebraic axioms for finite Jones index subfactors are dependent. In Section 2 the problem in the title is formulated in terms of separable bimodules. In Section 3 we specialize the problem to ring extensi...
We analyze the algebraic structures of G–Frobenius algebras which are the algebras associated to global group quotient objects. Here G is any finite group. These algebras turn out to be modules over the Drinfeld double of the group ring k[G]. We furthermore prove that discrete torsion is a universal group action of H(G, k∗) on G–Frobenius algebras by isomorphisms of the underlying linear struct...
EXTENDED ABSTRACT. Most of the results in traditional finite-field linear coding theory regarding the minimum distance of linear codes refer to the Hamming metric. Important early exceptions are given by Berlekamp’s nega-cyclic codes (cf. [1]) and Mazur’s [9] low-rate codes, both having interesting properties in terms of the Leemetric. At the beginning of the nineties of the previous century an...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید