Let n ≥ 2 and s ≥ 1 be integers and a = (a1, . . . , an) be a relatively prime integer n-tuple. The s-Frobenius number of this ntuple, Fs(a), is defined to be the largest positive integer that cannot be represented as ∑n i=1 aixi in at least s different ways, where x1, ..., xn are non-negative integers. This natural generalization of the classical Frobenius number, F1(a), has been studied recen...