نتایج جستجو برای: fixed point method hyers ulam rassias stability
تعداد نتایج: 2417985 فیلتر نتایج به سال:
we will apply the successive approximation method forproving the hyers--ulam stability of a linear integral equation ofthe second kind.
In this paper, we prove the Hyers–Ulam–Rassias stability of the quadratic mapping in generalized quasi-Banach spaces, and of the quadratic mapping in generalized p-Banach spaces.
In this paper, we investigate the generalized Hyers-Ulam-Rassias stability of a new quadratic functional equation f (2x y) 4f (x) f (y) f (x y) f (x y) + = + + + − −
In this paper, using the direct method we study the generalized Hyers-Ulam-Rassias stability of the following quadratic functional equations (2 ) ( ) 6 ( ) f x y f x y f x and (3 ) ( ) 16 ( ) f x y f x y f x for the mapping f from normed linear space in to 2-Banach spaces.
A familiar functional equation f(ax+b) = cf(x) will be solved in the class of functions f : R → R. Applying this result we will investigate the Hyers-Ulam-Rassias stability problem of the generalized additive Cauchy equation f ( a1x1+···+amxm+x0 )= m ∑ i=1 bif ( ai1x1+···+aimxm ) in connection with the question of Rassias and Tabor.
The Hyers-Ulam stability, the Hyers-Ulam-Rassias stability, and also the stability in the spirit of Gǎvru̧ta for each of the following quadratic functional equations f(x+y)+ f(x−y) = 2f(x)+ 2f(y), f(x+y + z)+ f(x−y)+ f(y − z)+ f(z−x) = 3f(x)+3f(y)+3f(z), f (x+y+z)+f(x)+f(y)+f(z)= f(x+y)+f(y+z)+f(z+x) are investigated. 2000 Mathematics Subject Classification. Primary 39B52, 39B72, 39B82.
In this paper, we establish the generalized Hyers–Ulam–Rassias stability of homomorphisms between ternary algebras associted to the generalized Jensen functional equation rf( sx+ty r ) = sf(x) + tf(y).
In this paper, we establish the generalized Hyers–Ulam–Rassias stability of C-ternary ring homomorphisms associted to the Trif functional equation d · C d−2f( x1 + · · ·+ xd d ) + C d−2 d ∑
The Hyers–Ulam–Rassias stability of the conditional quadratic functional equation of Pexider type f (x+y)+f (x−y) = 2g(x)+2h(y), x ⊥ y is proved where ⊥ is the orthogonality in the sense of Rätz.
Ulam-Hyers-Rassias Stability of Stochastic Functional Differential Equations via Fixed Point Methods
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید