نتایج جستجو برای: fast and slow twitch muscles

تعداد نتایج: 16869090  

Journal: :Journal of applied physiology 2015
Fuminori Kawano Keisuke Nimura Saki Ishino Naoya Nakai Ken Nakata Yoshinobu Ohira

Numerous studies have reported alterations in skeletal muscle properties and phenotypes in response to various stimuli such as exercise, unloading, and gene mutation. However, a shift in muscle fiber phenotype from fast twitch to slow twitch is not completely induced by stimuli. This limitation is hypothesized to result from the epigenetic differences between muscle types. The main purpose of t...

Journal: :Journal of applied physiology 2000
G R Adams F Haddad S A McCue P W Bodell M Zeng L Qin A X Qin K M Baldwin

Both slow-twitch and fast-twitch muscles are undifferentiated after birth as to their contractile protein phenotype. Thus we examined the separate and combined effects of spaceflight (SF) and thyroid deficiency (TD) on myosin heavy chain (MHC) gene expression (protein and mRNA) in muscles of neonatal rats (7 and 14 days of age at launch) exposed to SF for 16 days. Spaceflight markedly reduced e...

Journal: :The Journal of experimental biology 1985
M J Kushmerick

A description of cellular energetics of muscular contraction is given in terms of the rates and extents of high-energy phosphate splitting during contractile activity, in terms of high-energy phosphate resynthesis by respiration and net anaerobic glycolysis, and in terms of the associated uptake and/or release of H+. These chemical changes have been studied quantitatively by rapid freeze-clampi...

Journal: :The Journal of Cell Biology 1985
F H Schachat A C Canine M M Briggs M C Reedy

Two species of alpha-actinin from rabbit fast skeletal muscles were identified with a monospecific antisera. Designated alpha-actinin1f and alpha-actinin2f, their distribution in muscles does not correlate with histochemically defined fast fiber type. Rather, the presence of each correlates with Z-line width and with the expression of different thin filament Ca2+-regulatory complexes. alpha-Act...

2015
Kristin Halvorsen Hortemo Jan Magnus Aronsen Ida G Lunde Ivar Sjaastad Per Kristian Lunde Ole M Sejersted

Myosin light chain 2 (MLC2) is a small protein in the myosin complex, regulating muscle contractile function by modulating Ca(2+) sensitivity of myofilaments. MLC2 can be modified by phosphorylation and O-GlcNAcylation, two reversible and dynamic posttranslational modifications. The slow isoform of MLC2 (sMLC2) is dephosphorylated in soleus muscle during in situ loaded shortening contractions, ...

Journal: :Advances in physiology education 2013
S I Head M B Arber

The fact that humans possess fast- and slow-twitch muscle in the ratio of ∼50% has profound implications for designing exercise training strategies for power and endurance activities. With the growth of exercise and sport science courses, we have seen the need to develop an undergraduate student laboratory that demonstrates the basic properties of fast- and slow-twitch mammalian skeletal muscle...

2016
Malek Kammoun Philippe Pouletaut Francis Canon Malayannan Subramaniam John R. Hawse Muriel Vayssade Sabine F. Bensamoun

As transforming growth factor (TGF)-β inducible early gene-1 is highly expressed in skeletal muscle, the effect of TIEG1 gene deletion on the passive mechanical properties of slow and fast twitch muscle fibers was analyzed. Twenty five muscle fibers were harvested from soleus (Sol) and extensor digitorum longus (EDL) muscles from TIEG1-/- (N = 5) and control (N = 5) mice. Mechanical tests were ...

Journal: :American journal of physiology. Cell physiology 2013
Elena Bortoloso Aram Megighian Sandra Furlan Luisa Gorza Pompeo Volpe

Homer represents a new and diversified family of proteins made up of several isoforms. The presence of Homer isoforms, referable to 1b/c and 2a/b, was investigated in fast- and slow-twitch skeletal muscles from both rat and mouse. Homer 1b/c was identical irrespective of the muscle, and Homer 2a/b was instead characteristic of the slow-twitch phenotype. Transition in Homer isoform composition w...

Journal: :Journal of applied physiology 2007
Lei Cui Eric J Perreault Thomas G Sandercock

Studies on skinned fibers and single motor units have indicated that slow-twitch fibers are stiffer than fast-twitch fibers. This suggests that skeletal muscles with different motor unit compositions may have different short-range stiffness (SRS) properties. Furthermore, the natural recruitment of slow before fast motor units may result in an SRS-force profile that is different from electrical ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید