The main purpose of this manuscript is to prove a common fixed point theorem for two weakly compatible maps satisfying the following integral type contraction in \(G\)-metric space:\[\int^{G(\mathcal{F}x,\mathcal{F}y,\mathcal{F}z)}_0\varphi (t)dt\le \alpha \int^{L(x,y,z)}_0\varphi (t)dt,\] all \(x,y, z\in X\), where\begin{align*}L(x,y,z)&=\max\{G(gx, gy, gz), G(gx, \mathcal{F}x, \mathcal{F}...