نتایج جستجو برای: evolutionary learning algorithm
تعداد نتایج: 1362310 فیلتر نتایج به سال:
the stability of learning rate in neural network identifiers and controllers is one of the challenging issues which attracts great interest from researchers of neural networks. this paper suggests adaptive gradient descent algorithm with stable learning laws for modified dynamic neural network (mdnn) and studies the stability of this algorithm. also, stable learning algorithm for parameters of ...
The research into the ability of building self-learning natural language parser based on context–free grammar (CFG ) was presented. The paper investigates the use of evolutionary methods: a genetic algorithm, a genetic programming and learning classifier systems for inferring CFG based parser. The experiments were conducted on the real set of natural language sentences. The gained results confi...
Bayesian networks are graphical statistical models that represent inference between data. For their effectiveness and versatility, they are widely adopted to represent knowledge in different domains. Several research lines address the NP-hard problem of Bayesian network structure learning starting from data: over the years, the machine learning community delivered effective heuristics, while di...
This paper presents the thesis that all learning agents of finite information size are limited by their informational structure in what goals they can efficiently learn to achieve in a complex environment. Evolutionary change is critical for creating the required structure for all learning agents in any complex environment. The thesis implies that there is no efficient universal learning algori...
Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...
In this paper, the use of evolutionary computation for feedforward neural network learning is discussed. The aim is to combine benefits of evolutionary and gradient learning into two methods: BP/ES and ES/LMS. We compared experimental results obtained on XOR data by back-propagation algorithm, evolution strategies, and combined approach.
In this article, our interest is focused on the automatic learning of Boolean queries in information retrieval systems (IRSs) by means of multi-objective evolutionary algorithms considering the classic performance criteria, precision and recall. We present a comparative study of four well-known, general-purpose, multi-objective evolutionary algorithms to learn Boolean queries in IRSs. These evo...
Within the mind, there are a myriad of ideas that make sense within the bounds of everyday experience, but are not reflective of how the world actually exists; this is particularly true in the domain of science. Classroom learning with teacher explanation are a bridge through which these naive understandings can be brought in line with scientific reality. The purpose of this paper is to examine...
Neural networks and evolutionary computation have a rich intertwined history. They most commonly appear together when an evolutionary algorithm optimises the parameters and topology of a neural network for reinforcement learning problems, or when a neural network is applied as a surrogate fitness function to aid the evolutionary optimisation of expensive fitness functions. In this paper we take...
Imperialist Competitive Algorithm (ICA) is considered as a prime meta-heuristic algorithm to find the general optimal solution in optimization problems. This paper presents a use of ICA for automatic clustering of huge unlabeled data sets. By using proper structure for each of the chromosomes and the ICA, at run time, the suggested method (ACICA) finds the optimum number of clusters while optim...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید