نتایج جستجو برای: ethanol productionrice wastewaterssfa nigers cerevisiae

تعداد نتایج: 145004  

2017
Yanzhi You Pengfei Li Fuhou Lei Yang Xing Jianxin Jiang

BACKGROUND Efficient cofermentation of glucose and xylose is necessary for economically feasible bioethanol production from lignocellulosic biomass. Here, we demonstrate pretreatment of sugarcane bagasse (SCB) with green liquor (GL) combined with ethanol (GL-Ethanol) by adding different GL amounts. The common Saccharomyces cerevisiae (CSC) and thermophilic S. cerevisiae (TSC) strains were used ...

2017
Vanda Renata Reis Ana Teresa Burlamaqui Faraco Antonangelo Ana Paula Guarnieri Bassi Débora Colombi Sandra Regina Ceccato-Antonini

Strains of Saccharomyces cerevisiae may display characteristics that are typical of rough-type colonies, made up of cells clustered in pseudohyphal structures and comprised of daughter buds that do not separate from the mother cell post-mitosis. These strains are known to occur frequently in fermentation tanks with significant lower ethanol yield when compared to fermentations carried out by sm...

Journal: :Letters in applied microbiology 1997
L Fernandes M Côrte-Real V Loureiro M C Loureiro-Dias C Leão

In the yeast Zygosaccharomyces bailii ISA 1307, respiration and fermentation of glucose were exponentially inhibited by ethanol, both processes displaying similar sensitivity to the alcohol. Moreover, the degree of inhibition on fermentation was of the same magnitude as that reported for Saccharomyces cerevisiae. Acetic acid also inhibited these two metabolic processes in Z. bailii, with the ki...

2010
Rosa Garcia Sanchez Kaisa Karhumaa César Fonseca Violeta Sànchez Nogué João RM Almeida Christer U Larsson Oskar Bengtsson Maurizio Bettiga Bärbel Hahn-Hägerdal Marie F Gorwa-Grauslund

BACKGROUND Cost-effective fermentation of lignocellulosic hydrolysate to ethanol by Saccharomyces cerevisiae requires efficient mixed sugar utilization. Notably, the rate and yield of xylose and arabinose co-fermentation to ethanol must be enhanced. RESULTS Evolutionary engineering was used to improve the simultaneous conversion of xylose and arabinose to ethanol in a recombinant industrial S...

Journal: :Applied and environmental microbiology 2004
Karin Elbing Christer Larsson Roslyn M Bill Eva Albers Jacky L Snoep Eckhard Boles Stefan Hohmann Lena Gustafsson

The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and...

2012
Craig C. Long William Gibbons

Carbohydrates in soybeans are generally undesirable due to their low digestibility and because they "dilute" more valuable components (proteins, lipids). To remove these carbohydrates and raise the titer of more valuable components, ethanol production was investigated. Commercial enzymes (Novozyme cellulase, β -glucosidase, and pectinase) were added to ground soybeans (SB), soybean meal (SBM), ...

Broomcorn seed (Sorghum vulgare) was used as raw material for bioethanol production. Optimum conditions were obtained from response surface method. Broomcorn seed flour (45 g/l) was treated by alkaline treatment and dual enzymatic hydrolysis (0.7 g/l of α- amylase and 0.42 g/l of amyloglucosidase). The hydrolyzed total sugar of 25.5 g/L was used in conventional bioethanol production (8.1 g/l) u...

Journal: :Bioscience, biotechnology, and biochemistry 2005
Megumi Shobayashi Shin-ichiro Mitsueda Mariko Ago Tsutomu Fujii Kazuhiro Iwashita Haruyuki Iefuji

Ergosterol is an essential component of yeast cells that maintains the integrity of the membrane. It was investigated as an important factor in the ethanol tolerance of yeast cells. We investigated the effects of brewing conditions on the ergosterol contents of S. cerevisiae K-9, sake yeast, several kinds of Saccharomyces cerevisiae that produce more than 20% ethanol, and X2180-1A, laboratory y...

Journal: :Food technology and biotechnology 2015
Hoang Phong Nguyen Hoang Du Le Van Viet Man Le

The yeast cells of Saccharomyces cerevisiae immobilized on Nypa fruticans leaf sheath pieces were tested for ethanol tolerance (0, 23.7, 47.4, 71.0 and 94.7 g/L). Increase in the initial ethanol concentration from 23.7 to 94.7 g/L decreased the average growth rate and concentration of ethanol produced by the immobilized yeast by 5.2 and 4.1 times, respectively. However, in the medium with initi...

2011
MOHIT S. MISHRA KANWAL SINGH

This work deals with the bioconversion of cellulose from press cakes of Jatropha oilseeds, which is a byproduct from a biodiesel plant, into ethanol by using the methods of acid pretreatment, hydrolysis and fermentation by Saccharomyces cerevisiae. The process includes the pretreatment method of the finely ground cellulosic solid oilseed cake with dilute sulphuric acid and heating the mixture a...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید