نتایج جستجو برای: eigenvalues of graph
تعداد نتایج: 21175700 فیلتر نتایج به سال:
We consider the set of Hermitian matrices corresponding to a given graph, that is, Hermitian matrices whose nonzero entries correspond to the edges of the graph. When a particular vertex is removed from a graph a number of eigenvalues of the resulting principal submatrix may coincide with eigenvalues of the original Hermitian matrix. Here, we count the maximum number of “interlacing equalities”...
Graph embeddings are useful in bounding the smallest nontrivial eigenvalues of Laplacian matrices from below. For an n×n Laplacian, these embedding methods can be characterized as follows: The lower bound is based on a clique embedding into the underlying graph of the Laplacian. An embedding can be represented by a matrix Γ; the best possible bound based on this embedding is n/λmax(Γ Γ). Howeve...
The question of what happens to the eigenvalues of the Laplacian of a graph when we delete a vertex is addressed. It is shown that λi − 1 ≤ λi ≤ λi+1, where λi is the ith smallest eigenvalues of the Laplacian of the original graph and λ v i is the ith smallest eigenvalues of the Laplacian of the graph G[V −v]; i.e., the graph obtained after removing the vertex v. It is shown that the average nu...
Set X = { M11, M12, M22, M23, M24, Zn, T4n, SD8n, Sz(q), G2(q), V8n}, where M11, M12, M22, M23, M24 are Mathieu groups and Zn, T4n, SD8n, Sz(q), G2(q) and V8n denote the cyclic, dicyclic, semi-dihedral, Suzuki, Ree and a group of order 8n presented by V8n = < a, b | a^{2n} = b^{4} = e, aba = b^{-1}, ab^{...
Let G be a simple connected graph with n ≤ 2 vertices and m edges, and let μ1 ≥ μ2 ≥...≥μn-1 >μn=0 be its Laplacian eigenvalues. The Kirchhoff index and Laplacian-energy-like invariant (LEL) of graph G are defined as Kf(G)=nΣi=1n-1<...
Contents Chapter 1. Eigenvalues and the Laplacian of a graph 1 1.1. Introduction 1 1.2. The Laplacian and eigenvalues 2 1.3. Basic facts about the spectrum of a graph 6
Let G be a connected simple graph whose Laplacian eigenvalues are 0 = μn (G) μn−1 (G) · · · μ1 (G) . In this paper, we establish some upper and lower bounds for the algebraic connectivity and the largest Laplacian eigenvalue of G . Mathematics subject classification (2010): 05C50, 15A18.
We improve some recent results on graph eigenvalues. In particular, we prove that if G is a graph of order n 2; maximum degree ; and girth at least 5; then
In 1986, Terwilliger showed that there is a strong relation between the eigenvalues of a distance-regular graph and the eigenvalues of a local graph. In particular, he showed that the eigenvalues of a local graph are bounded in terms of the eigenvalues of a distance-regular graph, and he also showed that if an eigenvalue θ of the distance-regular graph has multiplicity m less than its valency k...
The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of G. Several classes of graphs are known that satisfy the condition E(G) > n , where n is the number of vertices. We now show that the same property holds for (i) biregular graphs of degree a b , with q quadrangles, if q<= abn/4 and 5<=a < b = 0 (iii) triregular graphs of degree 1, a, b that are quadran...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید